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» The Three Problems
1. When did ML become statistics?

2. When did algorithms become models?

3. What is the genealogy of prediction?
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» Background and goals

> My interest, and “internalist” mission, is
driven by fundamental skepticism

> There are never any discontinuities; but also,
disciplinary histories are suspect

> | want rigorous histories to cite for my
audiences, collaborators, colleagues
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1. When did ML become statistics?
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¥ Machine Learning =» Data/Statistics

> “A computer program is said to
learn from experience E with
respect to some class of tasks T
and performance measure P if
its performance at tasks in T, as
measured by P, improves with
experience E." -Mitchell,
Machine Learning, 1997
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“briefly, and in its most
concrete form, the
object of statistical
methods is the
reduction of data.”

-R. A. Fisher, “On the
Mathematical
Foundations of
Theoretical Statistics”,
1922
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> "It is remarkable that a
science which began with
the consideration of games
of chance should have
become the most important
object of human
knowledge.”

-Laplace, Théorie Analytique
des Probabilitiés, 1812
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¥ The story I'd like to tell...

> ML started off trying to make “learning
machines”

> That failed

> They found correlations in data could achieve
the tasks they were trying to do

> They switched to doing statistics, but called it
the same thing

> Not perfectly accurate, but...

Three Open Problems for Historians of Al 10 of 42 Slides: https://MominMalik.com/three_problems.pdf



» Exhibit A: Norvig's 14 years of effort

> “As Steve Abney wrote in 1996, ‘In the space
of the last ten years, statistical methods
have gone from being virtually unknown in
computational linguistics to being a
fundamental given.'... after about 14 years of
trying to get language models to work using
logical rules, | started to adopt probabilistic
approaches”. -Norvig, “On Chomsky", 2010
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¥ Exhibit B: Boden's take

> “1980s-1990s work in machine learning
often replayed insights available in
traditional statistics... Indeed, it became
increasingly clear through the 1990s that
many ‘insights’ of connectionism were

differently named versions of statistical
techniques.” -Boden, Mind as Machine, 2006
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¥ Exhibit C: “in a matter of a few years”

> “At first, ML researchers developed... a
collection of rather primitive (yet clever) set of
methods to do classification... that eschewed
probability. But very quickly they adopted
advanced statistical concepts like empirical
process theory and concentration of measure.
This transition happened in a matter of a few
years.” -Wasserman, “Rise of the Machines”,
2014
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¥ Exhibit D: Breiman's “second” culture

> “In the past fifteen years, the growth in
algorithmic modeling applications and
methodology has been rapid. It has occurred
largely outside statistics in a new
community—often called machine learning
—that is mostly young computer

scientists.” -Breiman, “The Two Cultures”,
2001
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» Why does it matter?
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e > Status quo: Useful ignorance

> Story in Ch. 3, “Hello, Al"
s iy - "So, it's not real Al?" he asked.

- "Oh, it's real,” | said. “And it's
Artificial spectacular. But you know, don't you,

Intelligence

® When did ML
become
statistics?

that there's no simulated person inside
the machine? Nothing like that exists. It's
computationally impossible.”

- His face fell. “l thought that's what Al
meant,” he said. “| heard about IBM
Watson, and the computer that beat the
champion at Go, and self-driving cars. |
thought they invented real Al."

MISUNDERSTAND THE WORLD
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#% » Fight this with demystification

> When did ML \

Sfact?s?is? gir:;\ Schwartz @ o
When you’re fundraising, it’s Al
When you’re hiring, it’s ML
When you’re implementing, it’s linear
regression
When you’re debugging, it’s printf()

12:52 AM - 15 Nov 2017

5,545 Retweets 12,654 Likes @ %a [ gﬁﬁ ¢@» f:éﬂ

QO 90 M 55k Q) 13K [ @

Machine Learning

statistics

Artificial intelligence
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- 2. When did algorithms become models?

models?
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¥ Confusion in levels of abstraction

Binary classes/ » D
outcomes ata Model
Logistic development
regression » MOdelS

Decision trees, L,

Itera.tively . . regularization
weighted LS I Algonthms < mplementation
rmmmp  Software Distributed

Lapt computing
rocensy - Hardware
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¥ Advantages of rhetorical distancing?

> “neural networkers tend to ignore the
distributional assumptions they have made,
whereas statisticians explore their
consequences.” -Boden

> Language of “improvement” avoids analysis
of convergence?

> Other psychological/political benefits?
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¥ Avoids critiques of

Can an Algorithm be Wrong?

‘a5 Iré
2P iked up

bi//shif/

How do we know if we are where it's at?
Tarleton Gillespie explores the controversy
over Twitter Trends and the algorithmic
‘censorship’ of #occupywallstreet.

THROUGHOUT the Occupy Wall
Street protests, participants and
supporters used Twitter (among
other tools) to coordinate, debate,
and publicize their efforts. But
amidst the enthusiasm a concern
surfaced: even as the protests were
gaining strength and media cover-
age, and talk of the movement on
Twitter was surging, the term was
not “Trending.” A simple list of ten
terms provided by Twitter on their
homepage, Twitter Trends digests
the 250 million tweets sent ever
day and indexes the most vigor-
ously discussed terms at that mo-
ment, either globally or for a user’s
chosen country or city. Yet, even in
the cities where protests were hap-
pening, including New York, when
tweets using the term =occupy-
wallstreet seem to spike, the term
did not Trend. Some suggested that
Twitter was deliberately dropping
the term from its list, and in doing
so, preventing it from reaching a
wider audience.

The charge of censorship is a re-
vealing one. It suggests, first, that
many are deeply invested in the
Twitter network as a political tool,
and that some worry that Twitter's

Three Open Problems for Historians of Al

cupywallstreet’s absence is that Twitter “cen-
sored” it implies that Trends is otherwise an
accurate barometer of the public discussion. For
some, this glitch could only mean deliberate hu-
man intervention into what should be a smooth-
ly-running machine. The workings of these algo-
rithms are political, an important terrain upon
which political battles about visibility are being
fought (Grimmelmann 2009). Much like tak-
ing over the privately owned Zuccotti Park in
Manhattan in order to stage a public protest,
more and more of our online public discourse
is taking place on private communication plat-
forms like Twitter. These providers offer com-
plex algorithms to manage, curate, and organize
these massive networks. But there is no tension
between what we understand these algorithms
to be, what we need them to be, and what they
in fact are. We do not have a sufficient vocabu-
lary for assessing the intervention of these algo-
rithms. We're not adept at appreciating what
it takes to design a tool like Trends — one that
appears to effortlessly identify what's going on,
yet also makes distinct and motivated choices.
‘We don’t have a language for the unexpected as-
sociations algorithms make, beyond the inten-
tion (or even comprehension) of their designers
(Ananny 2011). Most importantly, we have not
fully recognized how these algorithms attempt
to produce representations of the wants or con-
cerns of the public, and as such, run into the
classic problem of political representation: who

210f 42

modeling

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

ROBUSTNESS IN THE STRATEGY OF SCIENTIFIC MODEL BUILDING[
G. E. P. Box

Technical Summary Report #1954
May 1979

ABSTRACT

ALL MODELS ARE WRONG BUT SOME ARE USEFUL
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» Allows for megalomania
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> “Like somebody volunteered
to be a straw horse
-Colleague of mine

> Given Box's dictum, would
anybody take seriously “The

Master Model"?

22 of 42

Slides: https://MominMalik.com/three_problems.pdf



>«

BERKMAN
KLEIN CENTER

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

¥ When did

<8 > Why does it matter?

models?

Three Open Problems for Historians of Al 23 0f 42 Slides: https://MominMalik.com/three_problems.pdf



¥ Study the right topic!

> “I hopped over to the Department of Management at LSE
to visit my new friend [and] | asked him: ‘What is an
algorithm?' In other words, what is the scope of things |
can expect will get discussed at a conference about
algorithms? "That's a very good question,’ Keith replied,
‘When | started, there was a fairly precise meaning to the
term. An algorithm was a set of rules, which would
generate an optimum answer to the problem that you'd
posed it. It was a statement of rules that gave you the
best possible answer in a finite amount of time."” -Poon,
“Response to Gillespie”, 2013
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¥ Apply critiques of statistics!

> “[Statistical models] assumes the social world consists of fixed
entities (the units of analysis) that have attributes (the
variables). These attributes interact, in causal or actual time, to
create outcomes, themselves measurable as attributes of the
fixed entities... it is striking how absolutely these assumptions
contradict those of the major theoretical traditions of sociology.
Symbolic interactionism rejects the assumption of fixed entities
and makes the meaning of a given occurrence depend on its
location—within an interaction, within an actor’s biography,
within a sequence of events. Both the Marxian and Weberian
traditions deny explicitly that a given property of a social actor
has one and only one set of causal implications..." -Abbott,
“Transcending General Linear Reality”, 1988
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¥ Apply critiques of statistics!

/&> CYBORGOLOGY

Fact Check: Your Demand for Statistical Proof is

Racist o

Candice Lanius on January 12, 2015

Today we’re reposting our most popular guest post of the year. This essay has
garnered a lot of attention and for good reason: it speaks directly to a kind of
liberal racism that is endemic to the institutions and professions that see
themselves as the good guys in this problem. -db

Three Open Problems for Historians of Al

26 of 42

> "“A white woman can say that

a neighborhood is ‘sketchy’
and most people will smile
and nod. She felt unsafe, and
we automatically trust her
opinion. A black man can tell
the world that every day he
lives in fear of the police, and
suddenly everyone demands
statistical evidence to prove
that his life experience is real.”
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> When did ML
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algorithms
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> What is the
genealogy of
prediction?

¥ Conclusion

> References
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® What is the
genealogy of
prediction?
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¥ Prediction seems scary powerful

MIT

Technology

ReVieW Topics+ The Download Magazine Events

Three Open Problems for Historians of Al

Intelligent Machines

Software Predicts Tomorrow’s
News by Analyzing Today’s and
Yesterday’s

Prototype software can give early warnings of disease or
violence outbreaks by spotting clues in news reports.

by Tom Simonite  February 1,2013

A method of using online information to
accurately predict the futurefcould transform
many industries.
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Mar 2010

redict... the future?

Predicting the Future With Social Media

Sitaram Asur
Social Computing Lab
HP Labs
Palo Alto, California
Email: sitaram.asur@hp.com

Abstract—In recent years, social media has become ubiquitous
and important for social networking and content sharing. And
yet, the content that is generated from these websites remains
largely untapped. In this paper, we demonstrate how social media
content can be used to predict real-world outcomes. In particular,
we use the chatter from Twitter.com to forecast box-office
revenues for movies. We show that a simple model built from

Bernardo A. Huberman
Social Computing Lab
HP Labs
Palo Alto, California
Email: bernardo.huberman@hp.com

This paper reports on such a study. Specifically we consider
the task of predicting box-office revenues for movies using
the chatter from Twitter, one of the fastest growing social
networks in the Internet. Twitter !, a micro-blogging network,
has experienced a burst of popularity in recent months leading
to a huge user-base, consisting of several tens of millions of

Predicting the Future — Big Data, Machine Learning,

and Clinical Medicine
Ziad Obermeyer, M.D., and Ezekiel J. Emanuel, M.D., Ph.D.

y now, it’s almost old news:

1216

big data will transform med-
icine. It’s essential to remember,
however, that data by themselves
are useless. To be useful, data
must be analyzed, interpreted, and
acted on. Thus, it is algorithms —

not data sets — that will prove
transformative. We believe, there-
fore, that attention has to shift to
new statistical tools from the
field of machine learning that
will be critical for anyone practic-
ing medicine in the 21st century.

First, it's important to under-
stand what machine learning is
not. Most computer-based algo-
rithms in medicine are “expert
systems” — rule sets encoding
knowledge on a given topic, which
are applied to draw conclusions

N ENGL) MED 375;13 NEJM.ORG SEPTEMBER 29, 2016

The New England Journal of Medicine

Downloaded from nejm.org at Harvard Library on November 8, 2018. For personal use only. No other uses without permission.

L]
pl’e dlCt verb
pre-dict | \pri-‘dikt@\
predicted; predicting; predicts

Definition of predict

transitive verb

: to declare or indicatelin advancel

especially iforetellbn the basis of observation, experience, or scientific reason

intransitive verb
: to make a prediction

Other Words from predict
Synonyms

Choose the Right Synonym

Copyright © 2016 Massachusetts Medical Society. Al rights reserved.

Three Open Problems for Historians of Al

30 of 42 Slides: https://MominMalik.com/three_problems.pdf



> “Prediction” is not prediction!

> “It's not prediction at all! | have not found a
single paper predicting a future result. All of
them claim that a prediction could have
been made; i.e. they are post-hoc analysis
and, needless to say, negative results are
rare to find." -Gayo-Avello, "l Wanted to
Predict Elections with Twitter and all | got
was this Lousy Paper”, 2012
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¥ Prediction is post-hoc correlation

> Non-causal
correlations can fit
the data really well!

> Google Flu Trends:
half flu detector, half
o winter detector

> Where did this
come from?
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ARTIFICIAL INTELLIGENCE MEETS NATURAL STUPIDITY
Drew McDermott
MIT Al Lab Cambridge, Mass 02139

As a field, artificial intelligence has always been on the border
of respectability, and therefore on the border of crackpottery.
Many critics <Dreyfus, 1972>, <Lighthill, 1973> have urged that we
are over the border. We have been very defensive toward this
charge, drawing ourselves up with dignity when it is made and
folding the cloak of Science about us. On the other hand, in private,

¥ Aspirational naming of Al?

Compare the mnemonics in Planner. <Hawitt,1972> with those in
Conniver <Sugsman and McDermott, 1972>:

Planner Conniyer

GOAL FETCH & TRY-NEXT
CONSEQUENT 1F-NEEDED
ANTECEDENT 1F-AQDED

THEOREM METHOD

ASSERT ADD

It is so much barder to write programs using the terms on the right!
When you say (GOAL .. .), you can just feel the enormous power at
your fingertips. It is, oi course, an illusion.

we have been justifiably proud of our
ideas, because pursuing them is the on

Unfortunately, the necessity for s
the culture of the hacker in computer
to cripple our self-discipline. In a youn
necessarily a virtue, but we are not getting any younger. In the
past few years, our tolerance of sloppy thinking has ‘led us to
repeat many mistakes over and over. If we are to retain any
credibility, this should stop. '

This paper is an effort to ridicule some of these mistakes.
Almost everyone | know should find himself the target at some
point or other; if you don’t, you are encouraged to write up your
own favorite fault. The three described here 1 suffer from myself.
1 hope self-ridicale will be a complete cathar5|s, but I doubt it. Bad

el B thauoh, if we can’t

le.

Wishful Mnemonicg | o o

Wishful Mnemonics

A major source of simple-mindedness in Al programs is the use
of mnemonics like "UNDERSTAND" or "GOAL" to refer to programs
and data structures. This practice has been inherited from more

Page 4

Three Open Problems for Historians of Al

When you say (GOAL .. .), you can just feel the enormous power at

your fingertips. It is, of course, an illusion.

had been called ASSOCIATE? As it is, the programmer has no debts
to pay to the system. He can build whatever he likes. There are
some minor faults; "property lists" are a little risky; but by now the
term is sanitized.

Resolution theorists have been pretty good about wishful
mnemonics. They thrive on hitherto meaningless words like
RESOLVE and PARAMODULATE, which can only have their humble,
technical meaning. There are actually quite few pretensions in the
resolution literature. <Robinson, 1965> Unfortunately, at the top of
their intellectual edifice stand the word "deduction”. This is very
wishful, but not entirely their fault. The logicians who first misused
the term (e.g., in the "deduction" theorem) didn’t have our problems;
pure resolution theorists don’t either. Unfortunately, too many Al
researchers took them at their word and assumed that deduction,
like payroll processing, had been tamed.

Of course, as in many such cases, the only consequence in the
long run was that "deduction" changed in meaning, to become
something narrow, technical, and not a little sordid.

SIGART Nowsletter No. 57 April 1976

33 0f 42 Slides: https://MominMalik.com/three_problems.pdf



>«

e > No, much older: Pearson, 1928

equal to certainty, would be found to be lumped up. Let us suppose for illus-
tration that a mark was made on our scale of skin pigmentation and the number
of individuals in a particular race with a darker pigmentation was found to be ,
and without knowledge of other races, we wanted to predict something about

® What is the

PEEEEN  the percentage of dark individuals in the sampled population. Now clearly with

prediction?

such a method of estimating dark individuals in a race, the frequency distri-
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® What is the
genealogy of
prediction?

¥ Shannon, 1950

Prediction and Entropy of Printed English
By C. E. SHANNON

(Manuscript Received Sept. 15, 1950)

A new method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are

developed.
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<48 > Solomonoff 1956

The inductive inference machine takes categories that have
been useful in the past and, by means of a small set of trans-
formations, derives new categorles that have reasonable like-
lihood of being useful in the future. These are then tested
empirically for usefulness in prediction and the new useful

> What s the ones are combined with old useful categories to create newer .

genealogy of

et ones. These, in turn, are tested and the process is repeated
again and again. -
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¥ Accidentally, uniquely dangerous?

> "In all times and places,
PREDICTING decision makers have looked to
THE predictive counselors of some
FutiRe sort—putative experts, be they
religious or secular, to guide
them regarding the auguries of
the gods, the stars, or the

inexorable decrees of fate or of
Nicholas Rescher nature.”

» When did ML

become

statistics?

> When did

An lntroduction.to the Theory of Forecasting

® What is the
genealogy of

> (Or perhaps deeply revealing?)
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¥ Conclusion

¥ Conclusion
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> Summary

> Certain historical work would be enormously
helpful for my political project:

> Show that ML became statistics/statistical

> Show algorithms became models, and
modeling logic is what we worry about

> Show where “prediction” comes from, to
show that it's not actually prediction
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» My own prediction

> The hype around Al and machine learning will
die in 5-10 years as it fails to achieve new
SUCCEeSSEeS

> Modeling will remain a persistent issue for the
remainder of human civilization

> Al might be an interesting historical case study
of aspiration/arrogance, but literature about

modeling will retain contemporary relevance
forever
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