Machine learning won't save us: Dependencies bias crossvalidation estimates of model performance

Momin M. Malik, PhD <momin_malik@cyber.harvard.edu>
Data Science Postdoctoral Fellow
Berkman Klein Center for Internet & Society at Harvard University

Virtual Sunbelt, 17 July 2020
Slides: https://mominmalik.com/sunbelt2020.pdf

Main take-aways

Introduction

tatistics v nachine earning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks

- Machine learning has ignored the problems of dependencies, but they come out in new ways!
- Cross-validation estimates of model performance are downwardly biased (overly "optimistic")
- Caution:
 - Analytic results, not real-world demonstration (yet)
 - General results, simulation not done specifically for a network
- Still, it's clear: machine learning can't save us!

Statistics vs. machine learning

3 of 27

Same tools, different goals

Introduction

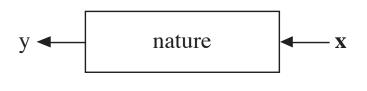
Statistics vs machine learning

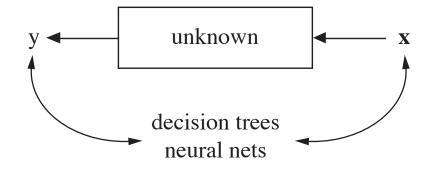
Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks

Conclusion





Breiman, 2001. See also Jones, 2018.

- Goal of statistics: model underlying process and relationships
- Goal of ML: automatically, reliably replicate input/output relationships

Introduction

Statistics v machine learning

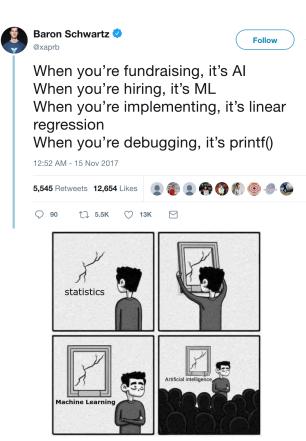
Overfitting and cross validation

Dependencies affect machine learning, too

Implications fo

Conclusion

Benefits of machine learning vs. stats



- (Lots of hype, I'll spare you the rhetoric...)
- Automatically finding the strongest correlation often gets better model fit than using domain knowledge
- "Flexible," automatic fits (including nonparametrics) involve fewer assumptions: so there is less to go wrong

Statistics machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks

Conclusion

The statistical problem of dependencies

- Statistics: all about central tendencies, which need multiple observations
- Need to make independence assumptions for a network to not be n = 1
- Dependencies: "merge" observations
- E.g.: duplicated data. No bias, but decreases effective sample size ("deflates" standard errors), can lead to wrong inferences
- More complex dependencies (e.g., transitivity, reciprocity) lead to [omitted variable] bias and wrong inferences

Can machine learning help?

ntroduction

Statistics machine learning

Overfitting and cross validatio

Dependencies affect machine learning, too

Implications for networks

- Can't have deflated standard errors if you don't estimate standard errors
- Doesn't matter if you have omitted variable bias if you don't care about bias
- Fewer assumptions means fewer places for things to go wrong
- Correlation-only: good for high-dimensional data (networks: can think of as a subspace of $\mathbb{R}^{\binom{n}{2}}$)

oduction

istics v chine ning

rfitting ar s validati

> ndencie : machii ng, too

cations f

networks

Conclusion

Overfitting and cross validation

8 of 27

Central problem: overfitting (fit to noise)

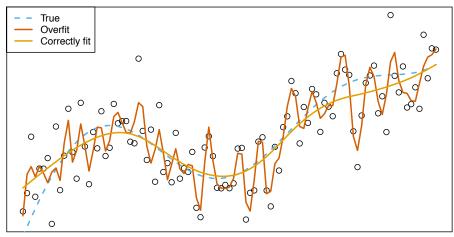
Introduction

Statistics vs. machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks



- If we are no longer guided by theory, and use automatic methods, we risk *overfitting*: fitting to the the noise, not the signal ("memorize the data")
- Even if we don't care about recovering the "true" function, overfitted models also *generalize* poorly

(Overfitting, discrete case: Titanic deaths)

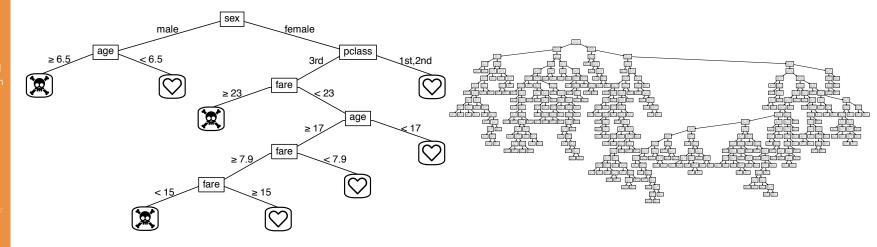
Introduction

Statistics vs machine learning

Overfitting and cross validatio

Dependencies affect machine learning, too

Implications fo networks



Data splitting: Catch overfitting

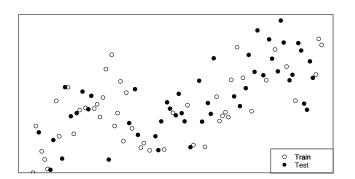
Introduction

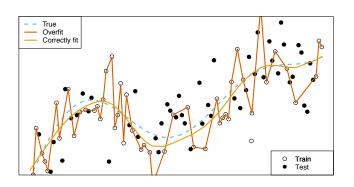
Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks





- Idea: if we split data into two parts, the signal should be the same but the noise would be different
- Cross validation: Fit on one part of data, then choose smoother bandwidth, tree depth, etc., by what minimizes loss on held-out data
- Also used for model testing

Classic argument for CV for testing

Introduction

Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks

$$\begin{split} & \mathsf{Err}(\hat{\mu}) = \frac{1}{n} \mathbb{E}_f \| Y^* - \widehat{Y} \|_2^2 \\ & = \frac{1}{n} \left[\mathbb{E}_f \| Y^* \|_2^2 + \mathbb{E}_f \| \widehat{Y} \|_2^2 - 2 \mathbb{E}_f (Y^{*T} \widehat{Y}) \right] \\ & = \frac{1}{n} \left[\mathbb{E}_f \| Y^* \|_2^2 + \mathbb{E}_f \| \widehat{Y} \|_2^2 - 2 \operatorname{tr} \mathbb{E}_f (Y^* \widehat{Y}^T) \right] \\ & + \frac{1}{n} \left[\mu^T \mu + \mathbb{E}_f (\widehat{Y})^T \mathbb{E}_f (\widehat{Y}) + 2 \operatorname{tr} \mu \mathbb{E}_f (\widehat{Y})^T \right] \\ & + \frac{1}{n} \left[-\mu^T \mu - \mathbb{E}_f (\widehat{Y}) \mathbb{E}_f (\widehat{Y})^T - 2\mu^T \mathbb{E}_f (\widehat{Y}) \right] \\ & = \frac{1}{n} \left[\operatorname{tr} \Sigma + \| \mu - \mathbb{E}(\widehat{Y}) \|_2^2 + \operatorname{tr} \operatorname{Var}_f (\widehat{Y}) - 2 \operatorname{tr} \operatorname{Cov}_f (Y^*, \widehat{Y}) \right] \\ & = \operatorname{irreducible error} + \operatorname{bias}^2 + \operatorname{variance} - \operatorname{optimism} \end{split}$$

oduction

tatistics v nachine arning

Overfitting and cross validatio

Dependencie affect machi learning, too

Implications fo networks

Dependencies affect machine learning, too

ntroduction

Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks

Conclusion

Some (other) problems with ML

- Automatic methods can easily pick up on non-causal correlations—sometimes okay, but can go wrong (e.g., Google Flu Trends)
- More profoundly, because of the bias-variance tradeoff, a "true" model can predict worse than a "false" model! (Shmueli, 2010)
 - (Relates to "Stein's paradox," see Efron & Morris 1977)
- Consequence: what "predicts" well (correlation, ML) doesn't necessarily "explain" well (causation, stats)
- Still: at least with prediction, we know we succeeded... right?

Test error on non-iid data has optimism!

Introductio

istics vs. chine ning

Overfitting and cross validation

Dependencies affect machin learning, too

Implications for networks

• Imagine we have, for $\Sigma_{ii} = \sigma^2$ and $\Sigma_{ij} = \rho \sigma^2$, $i \neq j$ $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{X} \\ \mathbf{X} \end{bmatrix} \boldsymbol{\beta}, \begin{bmatrix} \boldsymbol{\Sigma} & \rho \sigma^2 \mathbf{1} \mathbf{1}^T \\ \rho \sigma^2 \mathbf{1} \mathbf{1}^T & \boldsymbol{\Sigma} \end{bmatrix} \right)$

• Then, optimism in the training set is:

$$\frac{2}{n}$$
 tr $Cov_f(Y_1, \widehat{Y}_1) = \frac{2}{n}$ tr $Cov_f(Y_1, \mathbf{H}Y_1) = \frac{2}{n}$ tr \mathbf{H} $Var_f(Y_1) = \frac{2}{n}$ tr $\mathbf{H}\Sigma$

• But test set also has nonzero optimism!

$$\frac{2}{n}$$
 tr $Cov_f(Y_2, \widehat{Y}_1) = \frac{2}{n}$ tr $Cov_f(Y_2, \mathbf{H}Y_1) = \frac{2\rho\sigma^2}{n}$ tr $\mathbf{H}\mathbf{1}\mathbf{1}^T = 2\rho\sigma^2$

15 of 27

Simulating the toy example

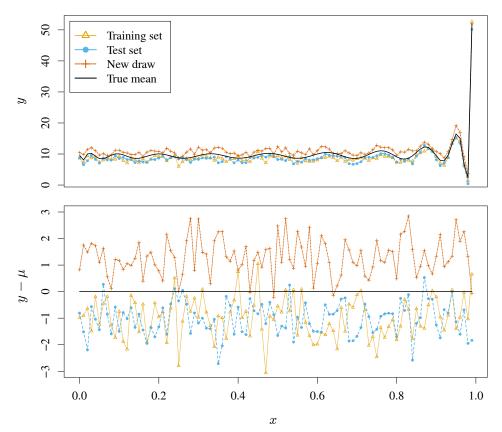
Introduction

Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks



Out-of-sample MSE: much worse!

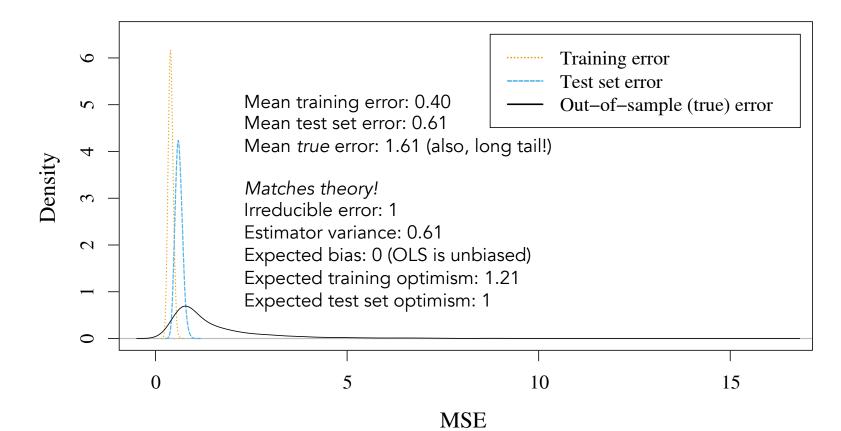
Introduction

Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks



ductio

thine ning

> itting aı validati

ndencie machi ng, too

Implication

Implication networks

Conclusion

Machine learning won't save us: Dependencies bias cross validation

Implications for networks

18 of 27

Slides: https://MominMalik.com/sunbelt2020.pdf

Applying to networks

Introduction

tatistics v nachine earning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks

Conclusio

• This formulation would apply to a network autocorrelation model, where network is nuisance parameter

 But what if we are modeling the edges, which represent dependencies between observations?

Modeling the edges

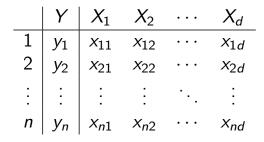
Introduction

Statistics vs machine learning

Overfitting an cross validation

Dependencies affect machine learning, too

Implications fo networks



index	from	to	Y	W_1	W_2	W_3	
$\overline{e_1}$	1	2	<i>y</i> ₁₂	$1(x_{11}=x_{21})$	$x_{12} - x_{22}$	<i>X</i> ₁₃	•••
e_2	2	3	<i>y</i> 23	$1(x_{11}=x_{31})$	$x_{12}-x_{32}$	<i>X</i> ₁₃	• • •
:	:	:	:	i :	•	:	
e_{n+1}	2	1	<i>y</i> 21	$1(x_{21}=x_{11})$	$x_{22}-x_{12}$	<i>X</i> ₂₃	• • •
÷	:	:	:	:	:	:	
$e_{2\binom{n}{2}}$	n-1	n	$y_{(n-1)n}$	$1(x_{(n-1)1}=x_{n1})$	$x_{(n-1)2}-x_{n2}$	X(n-1)3	• • •

But dyads are dependent too!

Introduction

Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications fo networks

Conclusion

Factor graph	Parameter name	Network Motif	Parameterization	Matrix notation
A _{ji}	-mutual dyads	00	$\sum_{i < j} A_{ij} A_{ji}$	$\frac{1}{2} \operatorname{tr} \left(\mathbf{A} \mathbf{A}^T \right)$
	in-two-stars		$\sum_{(i,j,k)} A_{ji} A_{ki}$	$\operatorname{sum}\left(\mathbf{A}\mathbf{A}^{T}\right)-\operatorname{tr}\left(\mathbf{A}\mathbf{A}^{T}\right)$
A _{ki}	-out-two-stars		$\sum_{(i,j,k)} A_{ij} A_{ik}$	$\operatorname{sum}\left(\boldsymbol{A}^{T}\boldsymbol{A}\right)-\operatorname{tr}\left(\boldsymbol{A}^{T}\boldsymbol{A}\right)$
	-geom. weighted out-degrees	_	$\sum_{i} \exp\left\{-\alpha \sum_{k} A_{ik}\right\}$	$\operatorname{sum}\left(\exp\{-\alpha \operatorname{rowsum}\left(\mathbf{A}\right)\}\right)$
A_{ik}	-geom. weighted in-degrees	_	$\sum_{j} \exp\left\{-\alpha \sum_{k} A_{kj}\right\}$	$\operatorname{sum}\left(\exp\{-\alpha\operatorname{colsum}\left(\mathbf{A}\right)\}\right)$
	-alternating tran- sitive <i>k</i> -triplets	aa.A	$ \lambda \sum_{i,j} A_{ij} \left\{ 1 - \left(1 - \frac{1}{\lambda}\right)^{\sum_{k \neq i,j} A_{ik} A_{kj}} \right\} $ $ \lambda \sum_{i,j} \left\{ 1 - \left(1 - \frac{1}{\lambda}\right)^{\sum_{k \neq i,j} A_{ik} A_{kj}} \right\} $	$\lambda \operatorname{sum}\left(\mathbf{A}^{(\cdot)}\left(1-\left(1-\frac{1}{\lambda}\right)^{\mathbf{A}\mathbf{A}-\operatorname{diag}(\mathbf{A}\mathbf{A})}\right)\right)$
A _{kj}	-alternating indep. two-paths	~.A.Å	$\lambda \sum_{i,j} \left\{ 1 - \left(1 - \frac{1}{\lambda}\right)^{\sum_{k \neq i,j} A_{ik} A_{kj}} \right\}$	$\lambda \operatorname{sum} \left(1 - \left(1 - \frac{1}{\lambda} \right)^{\mathbf{A}\mathbf{A} - \operatorname{diag}(\mathbf{A}\mathbf{A})} \right)$
	-two-paths (mixed two-stars)		$\sum_{(i,k,j)} A_{ik} A_{kj}$	$\operatorname{sum}\left(\mathbf{A}\mathbf{A}\right)-\operatorname{tr}\left(\mathbf{A}\mathbf{A}\right)$
A _{jk}	-transitive triads		$\sum_{(i,j,k)} A_{ij} A_{jk} A_{ik}$	$\mathrm{tr}\left(\mathbf{A}\mathbf{A}\mathbf{A}^{T} ight)$
₩ ≠ i,j	-activity effect	00	$\sum_i X_i \sum_j A_{ij}$	sum (X () rowsum (A))
X_j	-popularity effect	00	$\sum_j X_j \sum_i A_{ij}$	$\operatorname{sum} \left(\mathbf{X} \odot \operatorname{colsum} \left(\mathbf{A} \right) \right)$
X_i $\forall i,j:i eq j$	-similarity effect	00	$\sum_{i,j} A_{ij} \left(1 - rac{ X_i - X_j }{\max_{k,l} X_k - X_l } ight)$	sum (A ↔ S)

Graphical model and matrix notations for ERGM specification terms given in: Snijders et 2006. Joint work with Antonis Manousis and Naji Shajarisales, 2018

Covariance structure of edges (n = 15)

Introduction

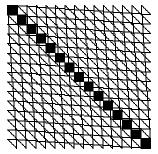
Statistics vs machine learning

Overfitting and cross validation

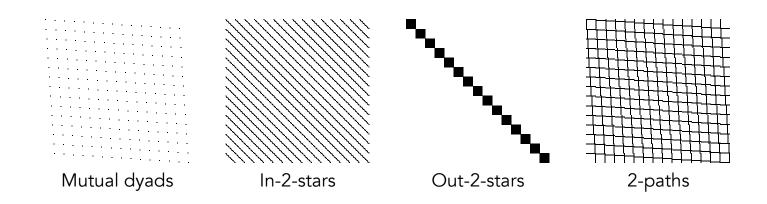
Dependencies affect machine learning, too

Implications fo networks

Conclusion



Total covariance



So, what to do?

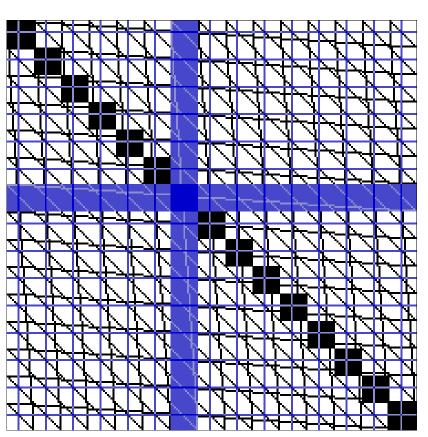
ntroduction

Statistics y machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implications for networks



- Partition nodes into training and test sets?
 - Breaks up triads; omitted edges "share" information across training and test
- Partition dyads?
 - Breaks up nodes; even worse
- Can't eliminate, but can minimize optimism by careful data splitting

Sunbelt 2020

Virtual

Machine learning won't save us: Dependencies bias cross validation

Conclusion

24 of 27

Slides: https://MominMalik.com/sunbelt2020.pdf

Never enough data

- ntroductio
- tatistics v nachine earning
- Overfitting and cross validation
- Dependencies affect machine learning, too
- Implication for networks
- Conclusion

- Mean function and covariance structure jointly not identifiable (Opsomer et al., 2011)
- Means: additional data that you gather also has covariance with previous data; so without independence assumptions (or assuming the mean), can't ever estimate covariance
- Hopefully, the covariance doesn't affect cross-validation...

"But what about ...?"

Terouucen

tatistics v achine arning

Overfitting and cross validatio

Dependencies affect machine learning, too

Implication for networks

- Representation learning? Deep learning? Neural nets?
 - Massive successes have been on very specific, *ordered* data types (images, text, audio). Graphs not ordered
 - node2vec is based on (undirected) random walks; only appropriate for some tasks (Khosla et al., 2019)
- Statistical relational learning?
 - The leading textbook on this never discusses how to properly do cross-validation! Same problems

Thank you! Summary:

- With ML, we have to deal with the exact same problems of dependencies, just manifesting in different ways
- Cross-validation estimates of model performance for networks will (almost) surely be overly optimistic
- How much optimism depends on how strong dependencies are across training and test splits
- Can try to minimize optimism with principled crossvalidation schema
- See https://arxiv.org/abs/2002.05193 for more

ntroductio

Statistics vs machine learning

Overfitting and cross validation

Dependencies affect machine learning, too

Implication for networks