11005. Network Models and
Graphical Models: A

Survey

Momin M. Malik
Tuesday, 6 July 2021
Networks 2021, Session S65. Machine Learning

Slides: https://MominMalik.com/networks2021.pdf



Scope

Network models represent dependencies with graphs;
graphical models (one type of which are “Bayesian
networks”) represent dependencies with graphs. That
causes confusion. But they are very different!

— Graphical models haven't done the best job at networks, and
networks haven't made the best use of graphical models

This talk is primarily to clarify (or create!) a conceptual
connection between these two types of models

For examples of applications of graphical modeling to
networks, see Farasat et al. (2015), Maier et al. (2014),
and Airoldi et al. (2008)



g8l Key points

- Graphical models represent dependencies (and
causal relationships) between variables

- Networks models are models of dyads, which
represent dependencies between observations

- Dyads can be modeled as random variables (e.g.,
Bernoulli for unweighted; Poisson for count; etc.)

- Dyads are themselves dependent! (reciprocity, triadic
closure, degree constraints)

— Graphical models can represent these “dyadic
dependencies’!




Key points

Key visualization

Terms: Snijders et al. (2006). From (old) joint work with

Antonis Manousis and Naji Shajarisales.

Parameter | Network - . .
Factor graph X Parameterization Matrix notation

name Motif
-mutual dyads o—o 2icj AiAji % tr (AAT)
-in-two-stars /\ Z(i,j,k) AjiAxi sum (AAT) —tr (AAT)
-out-two-stars /\ Z(r’,j 0 AijAi sum (ATA) —tr (ATA)

6 o '
-geom. weighted — Soiexp{—ad], A} sum (exp{—a rowsum (A)})
out-degrees
-geom. weighted — Yiexp{—ay Ag} sum (exp{—a colsum (A)})
in-degrees
alternating tran- [, 3 A | AY, Ay {1 -(1- %)Z"?"'J AikAkj} A sum (A © (1 -(1- %)AAidiag(AA)))
sitive k-triplets Vs
-alternating indep.| , /1 A {1 —(1- i)Zk#i,j Akakj} \ sum (1 - %)AA—diag(AA))
& ed

two-paths

two-paths (mixed
two-stars)
-transitive triads
-activity effect

-popularity effect

-similarity effect

2 (i.kg) A A
z:(i,/-,k) AijAikAik
X Z/- Ajj
35X 2 Ay

- |Xi—Xj]|
ZV’J A’J (1 T maxe [Xe—Xi|

sum (AA) — tr (AA)
tr (AAAT)
sum (X ) rowsum (A))
sum (X 0 colsum (A))

sum (A)S)




What are
graphical
models?

What are graphical models?
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B Graphical models = graphs for variables

« Like path diagrams in psych, but Season
more formal. From CS in 90s @

- Represent relationships between
variables; can reason through

dependencies
— Sprinklers are not directly Sprinkler e @ Rain
dependent on Rain, but if we

know the grass is wet, we know
either it rained or sprinklers were
on (at least one is true) @ Wet
- With probability distributions on
the nodes, they represent

conditional independencies e

- Equivalent to structural equation

: |
modeling (SEMs)! Slippery




gl Can represent causality

- Can also reason about causality Season
« Interventions block “paths” @
Wit o - Pearl introduced the “"do” operator
graphica to notate this algebraically

models?

- Are algorithms to determine
identifiability of parameters from  Sprinkler @ Rain
a given (or assumed? causal
structure (Bayes ball)

— Causal inference techniques to
estimate a causal graph (e.g., @ Wet
TETRAD algorithm) also exist,
but theoretical guarantees for

these procedures require strong,
untestable, and almost certainly @

false assumptions
Slippery




Ble| Mostly used for bookkeeping

« Most machine learning

applications are j@> v Ponc
effectively “bookkeeping” (3 - gﬁ'fa,a -
- E.g., in structural topic o
modeling (Roberts et al.,
2013), a topic doesn't
“cause’ a document, but
representing It as a
directed tie is to help

Oer6re

Language Model:

04 ~ LogisticNormal(p4, )
Zd,n ™~ Mult(@d)

W, p ~ Muh}(ﬁszzmn )

@
&

Topical Content:

:| ﬂjv o< exp(my, + kyF 4 kY 4 KUF)
» y,k Y,k
keep track of things for O i 02

P K \@ g ,

estimation

o




NETW
ORKS

What are
graphical

models?

Networks in graphical models

Network edges as
graphical model nodes in
a "relational Markov
network” (Getoor &
Taskar, 2007): awkward

f?

\vir1)| | A

Network is only a
confounder (Shalizi &
Thomas, 2011), no direct
dependencies between
edges

Full representation, but
only of a single type of
dependency (block
membership) (Airoldi et
al., 2008)



NE T W ‘6 g° ° yy .
B Two “directions” of dependencies

If covariates are independent (trivial graphical model, what we usually assume
in linear regression), the joint distribution of a response and a design matrix is:

d
p(Y,X) =p(Y, X1, ..., Xa) = p(Y| X4, ... Xa) | | P(X))
=1

(If we assume fixed X, as we usually do, the probabilities of Xj's go away)

But a true, complete joint factorization of the conditional distribution would be
over observations as well:

p(Y’X) = p(_yl, ...,yn‘Xll, cey X1dy X271y oo ey X2y ovnnny Xnl, ---:Xnd)

« An iid assumption applies to the observations, and are how we even have
multiple observations to estimate anything. This looks like:

n

iid
p(Y[X) = p(y1, .- YnlxX1, ... %a) = | | P(yilxi)
i=1




gl Parameterizing network models
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Networks: Dependencies as observations

Better way of looking at networks: make dyads the Y| X1 X Xd
observations Liyi|x11 X2 - Xud
«  The response is now an edge, or edge attribute 2| y2 | X1 X2 -t Xod
«  Transform all node covariates into edge covariates, e.g.,
- As a difference between continuous node attributes
I W ! ni\ Yn| Xn1 Xn2 - Xnd

- Indicator for if nodes in same category or not (or, make new

Parameterizing categories out of possible pairs, e.g., M—M, M—F, F>M, F—F)
network models
- As “sender” and/or “receiver” attributes

index | from to Y W, W, W3
e 1 2 Y12 1(x11 = x01) X12 — X22 X13
€ 2 3 Y23 1(x11 = x31) X12 — X32 X13

€n+1 2 1 Y21 1(x01 = x11) X22 — X12 X23

eg(g) n—1 n | Yn-1)n l(X(n—l)l = Xp1) X(n—1)2 — Xn2  X(n—1)3




B Parameterizing

- Descriptively,

1 if thereisatiesr —
a.. —
’ 0 otherwise.

« Turn this into a random variable:

Ajj " Bernoull; (p)




B As a logistic regression

- Add some covariates and it can become a logistic
regression:

Ajjlxi, x; ~ Bernoulli (f(x;, x;) " B)
£B) = 1] f(xi. %) B%(f(xi, %) B)' %
i=1 j#i
« The MLE of an intercept-only model is just the density.

~ 1
BMmLE = 2% (1) Zaij

2) i




B8l Problem: Dyads are dependent, too

+ In the language of ERGMs, “dyadic dependencies”
- Social networks: reciprocity makes A; L A;
- The p; model (Holland & Leinhardt, 1981) deals

with reciprocity as a one-off dependency by modeling

edges as multinomial, with a cross term:

1
P(Aj = aj, Aji = aji) = . exp{ ajj(1 + o + fi)
ij
+aji(p +aj + 5j)

+ pajaji |




g8l Models for dyadic dependencies

- Stochastic blockmodels (Wang & Wong,
1987): alternative to p;, two-level
nierarchical version of Bernoulli model

- Latent space models (Hoff et al., 2002): can
oe seen as graphical models with observable
nodes for edges, produced from hidden
nodes representing latent position




Markov property for network edges

- Landmark work: Frank & Strauss (1986)

- Markov dependence assumption: “A graph is
said to be a Markov graph if only incident
dyads can be conditionally dependent.”

- In retrospect, we can clarify this in terms of
graphical models

- The “"graph” is the network, and the Markov property
is of the graphical model of the network edges as
Bernoulli variables

‘3021




Markov property for network edges

‘3021

- Remarkably, using Hammersley-Clifford, Frank &
Strauss proved that the graphical model of an
undirected network is Markov if and only if

Po(A) = gy exp {HOL(A) + ”z: ekSli(A) +0- T(A)}
.t k=1 1

Normalization constant: need Non-maximal Number of
to sum over 22%(5) possible k-stars triangles

networks for each candidate @

- Especially surprising part (Kolaczyk, 2009): how did
triangles come out of this as a sufficient statistic??




Graphical models for networks

Graphical
models for

networks
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General modeling of dyadic dependencies

‘3021

« This eventually led to Exponential-family Random Graph
Models, which can model generic dependencies between
edges

- Can add any sufficient statistic, although they can be
collinear. E.g., two-paths are collinear with in- de rees,
out-degrees, and mutual dyads (Snuders et al. 2006)

Z AUAJk — y AUAJk — Z <A+J J ZAUAJ’>
IJ,k:k#i j= llkk#l

« But: bad theoretical properties, tricky to estimate, and
tricky to specify




Graphical
models for

networks

Dyadic dependencies in a graph

Terms: Snijders et al. (2006). From (old) joint work with

Antonis Manousis and Naji Shajarisales.

Parameter | Network . . .
Factor graph X Parameterization Matrix notation
name Motif
-mutual dyads o—o 2icj AiAji % tr (AAT)
-in-two-stars /\ Z(i,j,k) AjiAxi sum (AAT) —tr (AAT)
-out-two-stars /\ Z(y’,j,k) AijAi sum (ATA) —tr (ATA)

-geom. weighted
out-degrees

-geom. weighted
in-degrees

-alternating tran-
sitive k-triplets

-alternating indep.
two-paths

two-paths (mixed
two-stars)
-transitive triads
-activity effect

-popularity effect

-similarity effect

Shiexp{—ad>, Aw}
2jep{-a), Ay
AY Ay {1 —(1- %)Zk#i_j AikAkj}
Y {1 -(1- i)2k¢i‘j Ar'kAkj}
2 i.k) AikArg
3 (k) A Ak Ak

ZiXi Z/ Aij
ZijZiAij

- |Xi—Xj]|
ZV’J A’J (1 T maxe [Xe—Xi|

sum (exp{—a rowsum (A)})
sum (exp{—a colsum (A)})

A sum (A © (1 -(1- %)AA*diag(AA)))
\ sum (1 —a- %)AA—diag(AA))
sum (AA) — tr (AA)
tr (AAAT)
sum (X O rowsum (A))
sum (X 0 colsum (A))

sum (A)S)




Conclusions

Conclusions

11005. Network Models and Graphical Models: A Survey 22 of 25 Slides: https://MominMalik.com/networks2021.pdf



Bl Key points, redux

- Graphical models represent dependencies (and
causal relationships) between variables

- Networks models are models of dyads, which
represent dependencies between observations

 They are not the same thing, but we can
represent dyadic dependencies (dependencies
between edges of a network, in processes like
reciprocity and transitivity) as graphical models




g8l \Why should we care?

 Graphical models are network models are both powerful for
representing, reasoning through, and modeling dependencies

- But graphical models haven't done the best job at networks, and networks
haven't made the best use of graphical models

- Maybe because they are used by different communities, and the same words
(“networks”, “dependencies’) mean subtly different things

- Claritying the relationship of these two types of models helps head off
confusion, as well as deepen our appreciation of the idea of
“dependencies”
- As well as helping to train students

« Practically: Can graphical models help create, and estimate, new
statistical network models, and unify existing ones? Almost certainly,
although in many cases the estimation will still be MCMC (maybe
variational inference; Celisse et al., 2012)




References

References

Airoldi, Edoardo M., David M. Blei, Stephen E. Fienberg, and Eric Kolaczyk, Eric D. 2009. Statistical analysis of network data:

P. Xing. 2008. Mixed membership stochastic blockmodels. Methods and models. Springer. doi: 10.1007/978-0-387-88146-
Journal of Machine Learning Research 9, 1981-2014. 1.

Celisse, Alain, Jean-Jacques Daudin, and Laurent Pierre. 2012. Koller, Daphne and Nir Friedman. 2009. Probabilistic graphical
Consistency of maximume-likelihood and variational estimators models: Principles and techniques. The MIT Press, 2009.

in the stochastic block model. Electronic Journal of Statistics Maier, Marc, Katerina Marazopoulou, and David Jensen. Reasoning

6, 1847-1899. doi: 10.1214/12-EJS729. about independence in probabilistic models of relational data.

Farasat, Alireza, Alexander Nikolaev, Sargur N. Srihari, and arXiv:1302.4381v3
Rachael Hageman Blair. 2015. Probabilistic graphical models in Roberts, Margaret E., Brandon M. Stewart, Dustin Tingley, and
modern social network analysis. Social Network Analysis and Edoardo M. Airoldi. 2013. The structural topic model and
Mining 5 (62). doi: 10.1007/s13278-015-0289-6 applied social science. Prepared for the NeurlPS 2013
Fienberg, Stephen E. 2012, April. Graphical models for network Workshop on Topic Models: Computation, Application, and
data. Presentation at the Fields Institute Workshop on Evaluation.
Graphical Models. Snijders, Tom A. B., Philippa E. Pattison, Garry L. Robins, and
Frank, Ove and David Strauss. 1986. Markov graphs. Journal of Mark S. Handcock. 2006. New specifications for Exponential
the American Statistical Association 81 (395), 832-842. doi: Random Graph Models. Sociological Methodology 36, 99-153.
10.1080/01621459.1986.10478342 doi: 10.1111/j.1467-9531.2006.00176.x
Getoor, Lise and Ben Taskar. 2007. Introduction to statistical Wang, Yuchung J. and George Y. Wong. 1987. Stochastic
relational learning. The MIT Press. blockmodels for directed graphs. Journal of the American
Hoff, Peter D., Adrian E. Raftery, and Mark S. Handcock. 2002. Statistical Association 82 (397), 8-19. doi:

Latent space approaches to social network analysis. Journal of 10.1080/01621459.1987. 10478385
the American Statistical Association 97 (460), 1090-1098. doi:
10.1198/016214502388618906.



