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Why statistics?

If we have a philosophical belief that there is variability in the
world:

— Entities/processes have underlying similarities without being
Identical

— We want to not be fooled by variability, thinking that we have
found patterns when there are none

« Statistics is a way to systematically manage variability (using
probability as a model)

e Measures and metrics in networks do not account for
variability, and so we worry about them leading us astray

* Potentially: institutional/professional pressure, that if there
Isn't statistics, 1t isn't “science” and won't get published
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The problem with network statistics:

Everything is terrible, and nothing works.
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Overview

 Dependencies cause problems

« Areasonable default is to do a logistic regression
and add massive caveats

 Use whatever model is accepted by your community
 Or..

— Give up on empirical analysis and do simulation
modeling

— Give up on modeling and do qualitative analysis
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Outline

1. Why do “obvious” approaches not work?
a.  First pass: add network metrics as covariates

I Conceptual and technical problems
. Dependencies

b. Second pass: model edges

2. Overview of existing models

a.  Models that control for dependencies
. MRQAP
. Network autocorrelation
iii.  “Bootstrapping”
b.  Models that model dependencies
. Stochastic Block Models
. Propensity score matching (doesn't work even for non-networks)
ii.  Latent Space Models (justifiable but useless)
iv.  py, P, and ERGMs (perfect but unjustifiable)
V. SAOMs (highly stylized, layers upon layers of assumptions)
vi.  REMs (appropriate for lots of data from the Internet but poor predictions)

3.  Thedifficulties of causality in networks
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1. Why do “obvious” approaches
not work?



“Obvious” first pass:
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“Obvious” first pass:

Y | X1 Xo -+ Xk | Cy
vi | y1 | Xx11 X2 -+ Xk | di
Vo | Vo | Xo1 X22 -+ Xok | do
Vo | Yn | Xn1  Xn2 -+ Xpk | dn

Add centralities (degree, eigenvector, etc.) or other network metrics as a covariate
(explanatory variable, or maybe, make it the response variable)
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Conceptual problems

* (Ceteris paribus interpretation

 “Holding all else constant”: how do we change the (undirected)
degree of one node (or some centrality like eigenvector,
betweenness, closeness) and hold those of all other nodes
constant?

 Deeper question: what are we trying model?

« Centralities are a very crass way of capturing network structure
— Are a by-product of network structure, not the cause of it

 Even if we have a directed graph, e.g. an advice network,
— Modeling in-degree centrality would be getting at who is sought out
— But not by whom

— Out-degree centrality would be getting at who seeks out advice
— But not from whom
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Technical problems

« “Model misspecification”
— The wrong functional form, and/or
— The wrong variables

* Endogeneity

« Omitted variable bias (OVB)

 “Non-iid data” (independent and identically
distributed, an important property in statistics)

« What i1s “dependent” or “independent”?
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Dependence as factoring joint distributions

Full joint distribution (probability of observing the data as a whole):
p(Y, X) — p(yl, veey Yy X115 X124 eeey X1ky X214 «+oy Xnl, ---,Xnk)

k
ind
p(Y,X) = p(Y, X1, ..., X)) = p(Y X, ... Xe) | | p(X;)
j=1

If you can't factor by columns: graphical models

< >
p(Y,X) Yix X -0 Xk
— p(yl, vy Yny X1, ...,Xn) A V]. _yl Xl]. X12 e o o X]_k
T p(yi, %) V2 | y2 | Xo1 X2ttt Xk
=1
If you can't factor by
rows: network models Y Vo | Vn | Xn1  Xp2 .« . Xnk
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Graphs model both types of dependence!

Network model
(observations)

Graphical model Y(it1)

(variables) \

Z(j)

Y(J)t_1)

Y(j.1)

Graphical model from Shalizi & Thomas (2011)
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Graphs model both types of dependence!

Network model
(observations)

Graphical model

(variables)

Z(j)

Y(J)t_1)

A 4

Y(j.1)

Graphical model from Shalizi & Thomas (2011)
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Dependence: A simple illustration

* From Wikipedia: “Asking two people in the same
household whether they watch TV, for example,
does not give you statistically independent answers.
The sample size, n, for independent observations in
this case Is one, not two.”

* The simplest form of dependence: duplicate
observations

* Let's use Galton's height data

« Sample from the observations at random, and
append a copy of that observation to the data set.
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"Duplicated at random” 1s not so bad

« Standard errors shrink (at a rate of n"'/2), but no
bias.

« |If observations duplicated not at random, but
Instead proportionately to the dependent variable...
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9% ClI, duplicates in blue
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9% ClI, duplicates in blue
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9% ClI, duplicates in blue
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Endogeneity/Autocorrelation

 “Dependencies” can shrink standard errors and
cause bias

« Can phrase as a problem of endogeneity, or of OVB
« If the dependence is reqular enough, we can try to
« model it directly...

 Time series does this

* “Temporal autocorrelation™: an observation is
dependent with “itself” at different times

* Network dependencies don't have the same
regularity
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Second pass: Model the edges

Y | X1 Xo - Xk
Yi | X1 X2 - Xik
Yo | Xo1 X2 - X2k
Vn | Yn | Xn1  Xp2 - Xnk
‘ (Need to turn node covariates into edge covariates,
can do in different ways)
from to Y Wi Ws Ws e
er viow Y12 1(x11 = x21) X12 — X22 X13
e Va3 y23 1(x11 = x31) X12 — X32 X13
ent1 Vo Vi yo1 1(x21 = x11) X22 — X12 X23
ez(g) Vh—1 Van | Y(n—1)n IL(X(n—l)l — an) X(n—1)2 — Xn2  X(n—1)3
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Second pass: Model the edges

* Yes, you actually transform your data set, going
from n rows to 2x(;) rows (or (3) for undirected
graphs)

 The edges represent the dependencies between
observations

 Problem: the edges are dependent, too!

* Transitivity, reciprocity, Dunbar's number: these are
dependencies between edges

* Not only are we not measuring important forces, but
we assume them away (probably get OVB!)
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Second pass: Model the edges

» Still: a logistic regression on the edges is a
reasonable first pass

* Also, understand: most network models are models
of the edges
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2. Overview of existing models
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Controlling for network structure 1: MRQAP

« The "Quadratic Assignment Procedure” (Krackhardt,
1987) is a nonparametric permutation test, same as the
Mantel test in ecology

» The procedure: take the adjacency matrix A and another
matrix X of attributes/similarities, turn both into
vectors, find the correlation

* Permute the node |abels of the graph, take the new
adjacency matrix A, again turn into a vector, and
calculate correlation again

» If X were be correlated with A “by chance,” we should
see the actual correlation fall in the middle of a
distribution of permutations
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Controlling for network structure 1: MRQAP

« Can extend to “Multiple Regression QAP” (Dekker,
Snijders, & Krackhardt, 2007), same as “Mantel
regression”

 Problem: permutation tests are tests, not models

* When using them as models, you “get the standard
errors from the null model”: your standard errors are
a feature of the variability of permutations on the
graph, not the variability of your data X

* Further problem: can only control for network
structure, not model 1t
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Controlling for network structure 2:
Network autocorrelation

A great frame for understanding dependencies (Dow
et al., 1984)

Analagous to temporal autocorrelation and time
series models: fit a parameter for lag

Problem: can only fit a single parameter for all
network autocorrelation

Problem: is the adjacency matrix the “right” weights
matrix? Maybe not! (Leenders, 2002)

Further problem: again, control for network
dependencies at best, still don't model them
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Controlling for network structure 3:

“Bootstrapping”

* Find your graph density. Initialize an empty graph;
consider each pair independently, and connect with a
probability equal to the density

 Repeat many times to get a distribution of whatever
relationship you want to test. See where the empirical
measure falls in the center of that distribution (not
significant) or at the tails (significant)

 Equivalent to a “parametric bootstrap from a Bernoulli
random graph model” (or, from an Erdos-Renyi random
graph model)
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Controlling for network structure 3:
“Bootstrapping’

A very good sanity check if you develop new metrics.

But not very good as a null m
capture how networks actual

odel, because it doesn't
ly form (again, neglects

dependencies between edges like reciprocity,

transitivity, etc.)

Can do similar bootstrapping
“configuration model” (split t

with other models, like the
ne graph apart into nodes

with edges equal to their degree, then join up edges

randomly; preserves degree distribution)

Such bootstrapping from various models is sometimes
also called “conditional uniform random graphs”

Problem: no good null model

for social networks
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Modeling the dependencies 1: Stochastic
Block Models

A random graph model with community structure:
separate parameters for within-group ties and out-
of-group ties, otherwise everything is independent
and Bernoulli

A foundational model for statisticians, because it Is
analytically tractable

 But can only model community dependencies, so
really would never use for empirical analysis
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Modeling the dependencies 2: Propensity

score matching

« |dea: pair up people in the network and observe their
outcomes. Difference in outcomes can be attributed
to the network (Aral, Muchnik, & Sundararajan,

2009)

 Problem: even perfect nonparametric matching
cannot overcome OVB (Arceneaux, Gerber, & Green,

2010)
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Modeling the dependencies 3: Latent Space
Models

Consider networks as existing in
an extremely high-dimensional
space, where the graph neighbors
of a node are the ones it is
geometrically closest to

« The dimensions of this space
(somehow) “soak up” all
dependencies

» Latent Space Models model such a
space in lower dimension

* Pro: Unlike other models, this has
good theoretical properties

 Con: Pretty much the only
information is pictures like this:
tells nothing about processes of | | | | | | |
Interest, just gives a visual

grouping.

Handcock et al. (2006) 40 of 64
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Modeling the dependencies 4: p,, p,

* Logistic regression on edges can't model
dependencies between edges, like reciprocity

» Solution: multinomial regression. Each pair s an
observation, withvaluesin{i J,i—J, 1< J I <}
* Fixed effects for sending, receiving, and reciprocity

* This Is the “p, model’, recently redescribed as the “B
model” or “sender-receiver model”

* p, model: random effects version of p,
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Exponential[-family] Random Graph Models

(ERGMs)

« The crown jewel of 30+ years of SI0) = Lisicjzn Yo

research, came out of p, model Se») = Li<izn

i+
k

number of edges

number of k-stars (k > 2)

* (Main version treats graphs as the  T0) = Xixi<jcnzn ¥ Jin ;. number of triangles

response: graphs as explanatory e
are called "autologistic actor e
attribute models"?ALAAMs], aren't e
really done) |

» Logic: specify a set of sufficient
statistics

» These can include terms for
anything you can think of

By construction, these are the
sufficient statistics for a graph.
Question is if there is any
weighting of these statistics that
can produced the observed graph

Description Structura 1 signature
Dyadic p
Occ f 1 o0
rg o
Mixed 2-star C 1 f indegre: d outdeg .\
[ J
0. O
Network ralis d indeg —>0—0
./V 1\.
Occurrence of actors with zero indegree and zero outdegree 7 .#’
Sink Occurrence of actors with an outdegree of zero and indegree of > .#'
at least one
Triangle parameters
.\\,
Multiple paths of indirect connectivity 4‘/.% ®
®
O~
Activity based structural equivalence: multiple sets of out-ties /y.v/'r.
to the same third others ®
[ J
Popularity based structure equivalence: multiple sets of in-ties AA//
from the same third others ®
.\\5
Transitive closure of multiple 2-paths #(’% ®
@
Activity closure (AT-U) a f multiple in-2-stars 3\\0‘\".
Cclivity closure - osure ol multiple in-2Z-star:
./'/v/'
[ ]
Popularity closure (AT-D) Closure of multiple out-2-stars ¢:>.:>.
[}
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FRGMs: Procedure

Take the observed ﬂraph, do counts of sufficient statistics, and
initialize weights (through logistic regression)

Holding the rest of the graph constant, consider a single edge.

How would removing this edge (if present) or adding it (if absent)
change the count of sufficient statistics? Would a higher/lower
count make the graph more likely based on current weights?

:fky?s, adjust weights so that the observed graph remains most
Ikely.

Do this for some time to explore the parameter space (an MCMC
procedure)

At the end: if the terms put in were indeed the “correct” ones, these
would be their weights

Version for time series data: Separable Temporal ERGMs
STERGMs], needs observations at regular intervals.)
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ERGMs: Goodness-of-fit testing

Excellent goodness-of-fit (GOF)
testing framework.

- See if the sufficient statistics that
you put into the model can recover

the distribution of statistics that

were not among your sufficient
statistics

- E.g., can density, reciprocity and
transitivity alone as sufficient

statistics recover the graph's
degree distribution?

« Can test with anythin? (ge.g., any
subgraph/graph motif density), but
should be theoretically important

* Gives a complete framework for

finding a parsimonious explanation

Hunter et al. (2008)
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ERGMs: The bad news

« LOTS of problems.

 The space of graphs
doesn't play nice with
probabilities

 There are only a certain
number of graphs of any
given size, and only a
certain number of graphs
with a combination of
sufficient statistics o s 0 1

number of 2—stars
40 60 80 100 120
| |

20

Handcock (2003) 45 of 64



ERGMs: The bad news

« Sometimes, under large portions (@) emply graphs
of the parameter space, the most
likely graph is either the complete
graph or the empty graph: such
specifications are are degenerate

« Because the space of graphs is so .

0,: 2-stars parameter

large, don't know if a model is . .
degenerate or if our MCMC R N
procedure Is bad

« Model degeneracy (arguably) has (¢) minim 2-star graphs
nothing to do with the social g
phenomena of interest -

« Better specifications are
(arguably) technical, not
sociological, entities: e.dq., _
“%eometncally weighted edgewise
shared partners” LA A A T

64: edges parameter

0,: 2-stars parameter

Handcock (2003)

0,: 2-stars parameter

0,: 2-stars parameter

(b) full graphs

00 [Do2@osmos m
I T T
-10 -5 0 5 10

04: edges parameter

15 20

(g) maximal 2-stars graphs

T T T
-10 -5 0 5 10

04: edges parameter

T
15 20
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ERGMs: The bad news

Another: ERGMs are not “projective” (Shalizi &
Rinaldo, 2013)

Short explanation: if you are missing one node, it
could have ties to every other single node, which
would completely change the estimates of all the
network effects

In this sense ERGMs (and many other possible
similar network models) are extremely fragile in
substance (i.e., even if we can get them to work
technically, they might be leading us astray)
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Stochastic Actor-Oriented Models
(SAOMs)/SIENA

- Adifferent perspective: model
actor decision-making (“utility”)

* Currently, only SAOM is SIENA
(Simulation Investigation for

Empirical Network Analysis) ’
« Create utility functions with ERGM:- — g 0@ O e

like terms (SIENA manual gives
100+ built-in terms)

 Uses something like an agent-
based model to fit the terms

 Elegant, only model to get at co-
evolution of behavior and
networks, but layers upon layers of
assumptions

* And in practice, SIENA can be very
temperamental, it's hard to models
to successfully run

Steglich et al. (2010) 48 of 64
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Relational Event Models (REMs)

« Relational Event Models (Butts, 2008b) model continuous-time network data
(network ties with time steps, e.g. emails or calls, each of which is called an “event”)

« Itis similar to (and builds on) ERGMs and SIENA in the terms it uses to express
processes like transitivity, reciprocity, etc. Like SIENA, it models actor decision-
making (the likelihood function tries to capture actor “utility”)

+ Note that much of online data can be seen as “relational events,” so this is a very
useful model. Applying SIENA or STERGMs requires binning time, which is artificial

 REMs normalize the probability of an observed event stream not by all possible
event streams, but only by possible alternative actions (e.g., all other possible
3ﬁnder-recelver pairs) at a the time of each event given all previous events until
then

« A good, reasonable model, but has extremely low predictive performance (in
predicting who will send a tie to whom, and when/in what order it will happen)

— We usually think of good predictive performance as (Iat least somewhat) necessary, but
not at all sufficient, for getting close to “truth” (see also Shmueli 2010; Breiman 2001)

— By that standard, this is not a good model. But maybe the core phenomenon is too
variable for us to expect a model to predict it with any accuracy/recall

- Ultimately comes down to whether sequential alternative actions is the null set you
want to do statistics over, and (as always) if you “believe” it or not
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Scalability

* Yet another problem: none of the “good” models
(LSMs, ERGMs, SIENA, REMs) scale past a few
hundred nodes at best

— They all require intensive computation (generally, MCMC
procedures through a space of graphs or at least
alternative edges)

— In computer science terms, they scale as 0(n?) or worse

« So, forget using any of these to model all of
Facebook, or any other big dataset
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3. Causality



Network: explanatory or response?

Node
covars
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Network as cause? (as explanatory/IV?)

Node
covars
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Network as effect? (as response/DV?)

Node
covars



The problem: both happen.

Homophily Influence

Node
covars
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And they aren't the only things.

Reciprocity,
transitivity
Homophily Influence
Node
covars
Note: a proper graphical model representation of Usual
these causal processes would include time. See relationships

Shalizi & Thomas' (2011) model (slides 12-13).
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Sorting 1t all out 1s a challenge.

* There's too much going on: we might never be able
to get enough data (or the right kind of data) to sort
out different effects

* (SIENA does try to model this whole process, but it
comes down to if you believe it or not)

 Experimentation isn't really an option either: since
networks arise spontaneously, experiments that

force people into network structures lack ecological
validity
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Final thoughts



| essons

» Everything is terrible, and nothing works. Sorry.
 Don't bother with regression with centralities

» Do a logistic regression on the edges as a first pass (for
yourself or an audience)

» Maybe mess with ERGMs, SAOMs, or REMs... if you
believe them (and if nobody will yell at you for it)

» Fit a Latent Space Model if you need to satisfy
statisticians

« Wait for better models?

» Maybe there's a really clever study design or IV out
there you can find
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Come across a fancy (new) network model

and wondering If it's the answer?

 (Don't worry, it's not.)
* My heuristic: “[how] does it model transitivity?”

« If it doesn't, I'm not interested
— | care about network processes, for which transitivity (which
happens between node triplets) is exemplary

» E.g., “degree-corrected stochastic block model™? Nope.
“Kronecker graphs”? Nope. The “influence model™?
Nope.

« Caveat: if you are doing prediction, not explanation
(Shmueli, 2010; Breiman, 20012\, the data-generating
process Is Irrelevant and you should use whatever can
perform well
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The eternal caveat

 “All models are wrong...”
« “_.but some are useful.” —George Box
« Networks are hard to measure

» All network data is highly uncertain

— Perfect and complete trace data (e.g., online social
media) doesn't give us what's important

— Getting at what's important (e.qg., through surveys and
interviews) gives us imperfect and incomplete data

» Networks are an abstraction. They may not be the
“right” abstraction.
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