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KENTARO TOYAMA, 
“GEEK HERESY”
“In the course of five years [at Microsoft 
Research in India], I oversaw at least ten 
different technology-for-education 
projects… Each time, we thought we 
were addressing a real problem. But… 
in the end it didn’t matter—technology 
never made up for a lack of good 
teachers or good principals. Indifferent 
administrators didn't suddenly care more 
because their schools gained clever 
gadgets… and school budgets didn't 
expand no matter how many ‘cost-saving’ 
machines the schools purchased. If 
anything, these problems were 
exacerbated by the technology, which 
brought its own burdens.”
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KENTARO TOYAMA, 
“GEEK HERESY”

“These revelations were hard to 
take. I was a computer scientist, a 
Microsoft employee, and the head 
of a group that aimed to find digital 
solutions for the developing world. 
I wanted nothing more than to 
see innovation triumph, just as it 
always did in the engineering 
papers I was immersed in. But 
exactly where the need was 
greatest, technology seemed 
unable to make a difference.”
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KEY POINTS

• There are numerous critiques of “technological solutionism”: belief that 
social (or sociotechnical) problems can have technical solutions

• Dramatic practical and moral failings of such technical approaches 
can sometimes drive practitioners to seek alternatives (Malik & Malik, 
2021); but it shouldn’t have to come to that!

• Instead, recognize: Measurement is always imperfect, which always 
limits what quantification can do

• Uncertainty quantification is one useful tool within quantitative 
frameworks

• We can’t just look at differential model performance, but need to 
consider underlying causal dynamics, both quantitative and qualitative

• We want to avoid a repeat of “actuarial fairness”
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HIERARCHY OF METHODOLOGICAL LIMITATIONS
MALIK (2020)
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QUALITATIVE VS. QUANTITATIVE

• Qualitative research can get 
directly at how things are 
multifaceted, heterogeneous, 
intersubjective

• Quantification/measurements lock 
in one meaning; and always are 
proxies, which are imperfect (“all 
models are wrong;” Box, 1979)
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CHALLENGES OF QUANTIFICATION/ 
MEASUREMENT

• Constructs: primitives of social science
• What we care about (Jacobs & 

Wallach, 2020)
• Often unobservable and 

hypothetical/subjective (e.g., 
friendship). Constructs are 
sometimes even unobservable in 
physics! (Chang, 2004)

• Proxies always give errors (for 
binary constructs: false negatives 
and false positives), and even can 
be gamed (Campbell, 1975)

XFeatures Y “Ground Truth”

Z

Construct

X

Features

Y

“Ground Truth”



©2023 Mayo Foundation for Medical Education and Research  |  Slide 8

CONSTRUCTS: SUBJECTIVE, MULTIFACETED

Patterns in pixels
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Human label

“Cat-ness”
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WAYS OF UNDERSTANDING PEOPLE

As a case (quant) In narrative (qual)
Context/circumstance Stripped away Key
Mental states Absent (for the most part) Crucial; constitutive
Relevant features Determined in advance Emergent
Orientation to time Atemporal Chronological
Ordering of features Unimportant Meaningful
Other actors Invisible Often present
Causal logic Mathematical Theoretical
Boost predictive validity Add cases Know person better
Slide from Barbara Kiviat (work in progress), based on “Bowker and Star 2000; Bruner 1986; Desrosières 1998; Espeland 1998; Espeland and 
Stevens 1998, 2008; Fourcade and Healy 2017; Hacking 1990; Porter 1994, 1995; Ricouer 1998; White 1980, 1984”. I would add: Abbott, 1988
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ML IS “PREDICTION” ONLY

• “Predictions” are defined as what 
minimizes loss within a 
predetermined frame

• Correlations do this

• Non-causal correlations can 
sometimes predict well within a 
frame, but they frequently don’t 
explain, and can fail outside 
(Shmueli, 2010; Mullainathan & 
Spiess, 2017)

• ML is also fundamentally statistical; 
so we should estimate uncertainty
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UNCERTAINTY QUANTIFICATION

• Prediction-only means that we can 
ignore uncertainty quantification like p-
values. Right? 

• No! Metrics are estimators (specifically, 
point estimates) of out-of-sample 
performance

• They have distributions, which we 
should also estimate and study to 
know more about out-of-sample 
performance (i.e., is a difference in 
AUC significant or not? If not, 
unlikely the finding reproduces)

• k-fold cross-validation turns out to not be 
a valid way of estimating out-of-sample 
distributions! (Wager, 2019) Instead, use 
completely held-out data
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Figure: How dependencies bias cross-validation estimates of 
out-of-sample performance, from Malik (2020)
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“ACTUARIAL FAIRNESS”
OCHIGAME (2020)
• “Actuarial fairness” was a concept invented in the 1970s in response to civil rights 

campaigns, organizing against insurance redlining and for nationalizing insurance, 
and feminist campaigners, organizing against higher health insurance premiums for 
women (Horan, 2021)

• Actuarial fairness is: if it correlates, it is “fair” to use. This moved the debate into a 
technical realm. But people find the outcomes of actuarial fairness deeply unfair 
(Kiviat, 2019; Heras et al., 2019; Landes 2015)

• E.g., ZIP Code is a legal input for car insurance rates; indeed, empirically, car 
insurance payouts are higher in areas with more Black and brown residents. 

• Why? Segregation and redlining correlates race with geography, and 
underinvestment correlates geography with car insurance claims

• Even if race itself is excluded, any correlates of it have the same effect. Similarly, 
excluding correlates leads to worse performance

• Even if not used for the purpose of discrimination, using race or its correlates 
effectively further punishes the victims of injustice and cruelty (Hellman, 2008), 
amounting to a “tax” on Black and brown people (Fergus, 2013)
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WHAT IS FAIR TO USE FOR CONSUMER LENDING?
NATIONAL SURVEY BY KIVIAT (2021)
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DISCUSSION

• Not everything should be formalized, but also, not everything can be 
formalized (Selbst et al., 2019); some things can only be addressed 
qualitatively

• Try to have better measurements of more things that matter
• Uncertainty quantification does help for quantitative work

• What can be put into a “common task framework” already presupposes 
too much ethically (LaCroix & Luccioni, 2022) and can be unrealistic 
(Wagstaff, 2012)

• Have we decided on optimizing to an unjust status quo, or whether 
we try to change it, e.g., through affirmative, reparative actions? 

• AI risks recreating the harms of “actuarial fairness” by optimizing to 
outcomes regardless of how or why they come about (Ochigame, 2020)
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