ALLAMODELS ARE WRONG BUT SOME ARE USEFUL

A Hierarchy of Limitations in
Machine Learning



» Objective

> What are all the ways in which machine
learning can fail*?

> How can we address these failure points?

-ail = be unreliable, or result in unanticipated
narm

> Failures will form a hierarchy
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<8 > The basic bargain of ML

So long as machine
learning establishes
external validity
(generalizability) from a
given input, it can
arguably ignore...

y +— unknown «— x> All other Valldlty

questions
k‘ decision trees J > All the problems that
plague statistics

y €— nature <+——X

neural nets

Breiman, 2001, Stat. Sci. See also Jones, 2018, Hist. Stud. Nat. Sci.
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== > Can focus on one goal

Random variable, X

¥ Introduction

¥ Meaning and
measurement

> Central
tendency

¥ Causality

> Capturing
variability

Expe aIue,\]E(,ZZ) Stan

~

» ' »

> Reflection

» Future steps

¥ References

See also: Robert Tibshirani, “Recent Advances in Post-Selection Inference” (2015)
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¥ Introduction

» Everything else can be ignhored

REAL WORLD

Unobserved
Mec[ngrli§ms

Experiments
or

{ key features _

Observations

THEORETICAL WORLD

random
. 1
~ _ variables_-

\‘(/ ~

\

-

Formal
Statistical Methods

- ~

’ N
1 Conclusions )

Kass, 2011, Stat. Sci.

Kinds of Validity

Construct Validity

Inference Validity

~r

(measurement) (studies)
: | [ |
N
“Translation” Criterion Internal ( External
\—/
Face Content Predictive Concurrent| |Convergent| Discriminant

A Hierarchy of Limitations of ML

Adapted from Borgatti, 2012
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¥ Introduction

> ...or can it?
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» Outline

Problems with/Failures of:
> I\/\eaning and measurement sts More general;

problems
> Central tendency percolate
. downward in
> Causallty this hierarchy
> Capturing variability
> CrOSS‘ValidatiOn ML More specific
Reflection
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¥ Meaning and
measurement

» Meaning and measurement

A Hierarchy of Limitations of ML
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» Meaning-making

"During the writing of this book, my first
grandchild was born. The hospital records
document her weight, height, health[;] the
mother’s condition, length of labor, time of birth,
and hospital stay... These are physiological and
institutional metrics. When aggregated across
many babies and mothers, they provide trend
data about the beginning of life—birthing."
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» Meaning-making

"But nowhere in the hospital records will you find
anything about what the birth of Calla Quinn
means. Her existence is documented but not what
she means to our family, what decision-making
process led up to her birth, the experience and
meaning of the pregnancy, the family experience
of the birth process, and the familial, social,
cultural, political, and economic

context..." (Patton, 2015)
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wom > Exper ience

_ > “A white woman can say that
a neighborhood is ‘sketchy’
and most people will smile
@ CYBURGULUGY and nod. She felt unsafe, and
we automatically trust her
opinion. A black man can tell
Fact Check: Your Demand for Statistical Proof is the W0r|d that eve ry day he

Racist | /o lives in fear of the police, and
suddenly everyone demands

¥ Meaning and
measurement

Today we're reposting our most popular guest post of the year. This essay has . . | . d

garnered a lot of attention and for good reason: it speaks directly to a kind of Sta t | St | C a eV | e n C e tO p I’OVG
liberal racism that is endemic to the institutions and professions that see h h i | 'f 0 0
themselves as the good guys in this problem. -db t at I S I e ex p e r I e n C e I S

real.”
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<™ > Validating measurements

¥ Meaning and
measurement

Kinds of Validity

Construct Validity Inference Validity
(measurement) (studies)
| |
| | | |
“Translation” Criterion Internal External
| |
| | | | | |
Face Content Predictive Concurrent Convergent Discriminant
Adapted from Borgatti, 2012
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» Solutions

> See quantitative research as building on what
Is qualitatively known, not replacing it

> Think about measurement! Work with
experts in validation

> Integrate qualitative research for:
- Needs assessments prior to ML

- Annotation for training data
- Evaluating implementations of ML systems
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% Central
tendency

» Central tendency
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> The world as a data matrix

“it is striking how absolutely these assumptions contradict
those of the major theoretical traditions of sociology.
Symbolic interactionism rejects the assumption of fixed
entities and makes the meaning of a given occurrence
depend on its location — within an interaction, within an
actor's biography, within a sequence of events.

“Both the Marxian and Weberian traditions deny explicitly
that a given property of a social actor has one and only one
set of causal implications... Marx, Weber, and work deriving
from them in historical sociology all approach social

causality in terms of stories, rather than in terms of variable
attributes.” (Abbott, 1988)
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e > “Flaw of averages”

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

¥ Introduction

¥ Meaning and
measurement

- - -
\rt

% Central | —
tendency

¥ Causality

> Capturing
variability

> Cross- { ‘
validation

> Reflection

¥ Future steps

— o ) A —— Igp—

S

¥ References

Source: Todd Rose. lllustration: Future for Learning.
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» Solutions

> No matter how small the bins are, is still a
central tendency (i.e.: mean, median, majority
class, etc.)

- No longer a central tendency when the bins have an n
of 1... but then ML and stats can do nothing but
restate that datum

> Recognize that planning to the central tendency

punishes outliers (Keyes 2018): plan for this!
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&8 > Causality
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> Sometimes, people want causality

> "A project | worked on in the late 1970s was the
analysis of delay in criminal cases in state court
systems... A large decision tree was grown, and |
showed it on an overhead and explained it to the
assembled Colorado judges. One of the splits was on
District N which had a larger delay time than the
other districts. | refrained from commenting on this.
But as | walked out | heard one judge say to another,
‘I knew those guys in District N were dragging their
feet.” (Breiman, 2001)
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el > “Predictions” are correlations

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY
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e > Not an obvious usage of “predict”

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

. oo 88 w PREDICTING THE FUTURE
1troauctior — ——

p TABLE 6.1: A SURVEY OF PREDICTIVE APPROACHES
R["EIING Predictive Linking Methodology
Approaches Mechanism Of Linkage
II’[ UNFORMALIZED/JUDGMENTAL
tendency I:".I.' R [ judgmental estimation expert informants  informed judgment
FORMALIZED/INFERENTIAL

¥ Causality

RUDIMENTARY (ELEMENTARY)

prevailing trends  projection of prevailing
trends

\n_Introduction Lo the Theory of forecasting

» Capturing geometric patterns  subsumption under an
variability established pattern
circumstantial comparability assimilation to an ana-
analogy groupings logous situation
SCIENTIFIC (SOPHISTICATED)
indicator coordination causal correlations statistical subsumption
- into a correlation
> Reflection . law derivation accepted laws inference from accepted
Nicholas Resch i -
U WL Rr or statistical)
> Future steps phenomenological formal models analogizing of actual
modeling (physical or (“real-world”) pro-
(analogical) mathematical) cesses with presumably
» References isomorphic model
process
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>«

e > Creates two types of modeling!

N\
2
Correlations may “predict” well Informative models may not fit well
> Breiman, 2001: Prediction > Breiman 2001: Information

> Shmueli, 2010: Prediction > Shmueli 2010: Explanation
> Kleinberg et al., 2015: Umbrella > Kleinberg et al 2015: Rain dance
>

> Mullainathan & Spiess, 2017: y- Mullainathan & Spiess, 2017: 3-
hat hat
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Simulation of Shmueli, 2010, Stat. Sci
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¥ Solution: Determine type of

problem

> By “prediction”, we mean correlation (Caruana et al.,
2015; Doshi-Velez & Kim, 2017): communicate this!!

> If not a "prediction policy problem”, then machine
learning may not be appropriate (whether explainable/
interpretable or not!)

> Then: causal modeling, or statistical modeling of data-
generating process to get “explanations” (causality lite)
> Other benefits to causal knowledge:

- Makes predictions robust to distributions shifts (argument of
causal learning literature; Spirtes & Zhang, 2016)

- Allows us to intervene
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» Capturing variability
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AN > When data don’t capture key

BERKMAN
KLEIN CENTER

Variability (Google Flu TrendS)

Data available as of 4 February 2008

5 T T T T T T T T
2.5 -ﬁpa‘af/ T
-—CDC Google flu trends
0 1 1 1 1 1 1 1 1 10
5 Data available as of 3 March 2008 Orignal GFT Revised GFT
28 %&J"\ {1 & 8
S 2
(“ 1 1 1 1 1 1 1 1 E
E 0 =
% Capturing g Data available as of 31 March 2008 3
variability a S T T T T T T T T 5
= g B
2.5F 1 d
Q
(3]
O 1 1 1 1 1 1 1 1
. Data available as of 12 May 2008 2
Wave 1 wave 2, POS-HINT 0 2012 923300 20122013 season
= ?J\; 057w 'fﬂ"‘"-’.‘J 122709 : Va2 :alé-l}
b
0 1 1 1 1 1 1 1 1
40 43 a7 51 3) 7 11 15 19
Week
Ginsberg et al., 2012, Nature Santillana et al., 2014, Am. J. Prev. Med.
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el > Real-world testing of ML results

> van't Veer et al.
(2002) found 70
genes correlated with
developing breast
cancer

> Of course the

- correlations were
optimal, post-hoc. But
| é did it generalize?

A Hierarchy of Limitations of ML 27 of 6] https://MominMalik.com/msrne2019.pdf
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8 » Implementation testing

“Clinical” risk

High Low
Both tests MO,[(: j; ts ays . Treat with
i ' ’ chemo
High EEEEIESY gl doctor says
sl i =8 don't
Risk via
¥ Capturing Correlatlons DOﬂ't treat
variability W|th gene W|th ChemO
expression
Doctor says Both tests
Low BERIGCEIMIlelel<] agree, low
says don't risk [

Cardoso et al., 2016, NEJM
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¥ Capturing
variability

> Implementation testing

“Clinical” risk
High Low

Both tests

High ag
Risk via
correlations
with gene
expression

Chemo-
therapy is

Low

Cardoso et al., 2016, NEJM
A Hierarchy of Limitations of ML

ree, high
risk

Both tests
agree, low
risk

similar
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Treat with
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Don’t treat
with chemo
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<8 > Implementation testing

“Clinical” risk

High Low
Both tests . Treat with
High agree, high chemo
risk

Risk via

¥ Capturing Correlatlons DOI’]’t treat

variability W|th gene Wlth ChemO
expression

Finding: Machine learning
alone would make things
worse. But as a secondary
diagnosis, on average it
catches false positives and
Cardoso et al., 2016, NEJM avoids unhe|pfu| chemo!
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¥ Capturing
variability

> Implementation testing: Detalls

Baseline Survival (no chemotherapy)

100 = - Low clinical and genomic
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= 80 | i
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5% 604 High clinical and genomic
£8 50
=z wn
28 40
g=
?_ 30
o 204
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C T T T T T T T T 1

Year

> Before
experiment
(training data)

(Note: still limitations in how
experimental subjects may be

unrepresentative.)
A Hierarchy of Limitations of ML

Clinicial says low risk, Model says high risk Clinicial says high risk, Model says low risk
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Year Year

> Low model risk,
high clinical
risk: chemo
makes no

difference
https://MominMalik.com/msrne2019.pdf

> High model risk,
low clinical risk:
randomize.
Chemo worse!
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> Solutions to capturing variability

> GFT is a prediction policy problem: problem wasn't
overfitting, or causality (although causality may have
helped), but that there was key variability (non-
winter flu) that had not yet been observed

> Rhetoric: Emphasize that cross-validation does not
give performance guarantees, only suggestive of
performance until testing is done

> Real-world testing reveals how system can be used!

> (Also: experimental data can introduce full amount
of variability, even if not doing causal inference)
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¥ Cross-
validation

» Cross validation

A Hierarchy of Limitations of ML
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» Generalizability through CV

> Generalizability is shown (at the very least)
through cross validation
> CV can go wrong in known ways:
- improper splitting
— publication bias (Gayo-Avello, 2012)

- overfitting to the test set (Dwork et al. 2015, Park
2012)

> Not systematically acknowledged: dependencies
among observations
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¥ Classic argument for CV
Training: R
err(f) = 7 E¢[|Y = Y3
1 [trz 4l — E(Y)|2 + trVars(Y) — 2tr Cove(Y, ?)]

Testing:
Err(p) = LB Y* - V|3

=2 {trZJr||,LL—IE<‘;(\A/)\|§nLtrVarff(\A/)_2tr 'Y)}

The difference is the optimism (Efron, 2004; Rosset & Tibshirani, 2018):
Opt(f1) = Err(fi) — err(f) = 2 tr Cove(Y, Y)
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> Apply this to non-iid data

> Imagine we have, for £; =¢?and £; = po?, i#j

Y, X >  po?117
= (3] o )
> Then, optimism in the training set is:

2 tr Cove( Ve, Y1) = 2 tr Cove(Ya, HY1) = 2trH Vars(Y;) = 2tr HE

> But test set also has nonzero optimism!

2 tr Cove(Ya, Y1) = 2 tr Cove(Ya, HY;) = ZW trH11" = 2p0?
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el > One draw as an example

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY

Correlation B 7| -a Training set f
—0— Test set
between 2 1| —— New draw
observations can o || Tuemen
.. >
pull training and -
< |
test
o S |
observations
close to one © =
another, but @
potentially far o
¥ Cross- from an < [
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draw =
| i
| i
T ) I

X
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<#M > Simulated MSE

o N Training error
N Test set error
v — Mean training error: 0.40 ——  Out—of—sample (true) error
Mean test set error: 0.61
<« i Mean true error: 1.61 (also, long tail!)

Matches theory!

Density

ol
i Irreducible error: 1
~ x | Estimator variance: 0.6
1 Expected bias: 0 (OLS is unbiased)
2 Clos 13 Expected training optimism: 1.21
validation — — | I
i Expected test set optimism: 1
o A
I I I I
0 5 10 15
MSE
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> Solution: Split by dependencies

> Study covariance, and design data splitting around it

- But can't estimate both mean and the covariance
structure, have to assume one (Opsomer et al., 2001)

- (For covariance, no amount of data is ever enough!)

> Examples in literature:

- Temporal block cross-validation (Bergmeir et al., 2018)

- Leave-one-subject-out cross-validation (Hammerla &
Plotz, 2015)

- Network cross-validation
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¥ Reflection

¥ Reflection
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YOU KEEP ON USING THESE DATA

4ol > About me

HISTORY
RSN

Berkman

The Berkman Center for Internet & Society
at Harvard University

& -
I DO'NOT THINK THEY MEAN WHAT YOU THINK-THEY MEAN

Souetal ML

Ay S
School of Computer Science S Computing e

EEEEEEEEEE

Carnegie Mellon University

Data Science For Social Good
Summer Fellowship

¥ Reflection

A2 VAR VA VO " Ve

> | > | BERKMAN KLEIN CENTER

FOR INTERNET & SOCIETY AT HARVARD UNIVERSITY
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» Background

> “Methods are like people: if you focus only
on what they can't do, you will always be

disappointed.” (Shapiro, 2014)

> Trivially, all models are wrong because they
aren't the thing itself. But specifically, when,
why, and how does it matter that ML is
“wrong"?
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¥ Reflection

» Encountering social science

Annu. Rev. Sociol. 2004. 30:243-70

doi: 10.1146/annurev.soc.30.020404.104342

Copyright (© 2004 by Annual Reviews. All rights reserved

First published online as a Review in Advance on March 9, 2004

THE “NEW” SCIENCE OF NETWORKS

Duncan J. Watts
Department of Sociology, Columbia University, New York, NY 10027 ; Santa Fe Institute,
Santa Fe, New Mexico 97501 ; email: djw24@columbia.edu

Key Words graph theory, mathematical models, network data, dynamical systems

B Abstract In recent years, the analysis and modeling of networks, and also net-
worked dynamical systems, have been the subject of considerable interdisciplinary
interest, yielding several hundred papers in physics, mathematics, computer science,
biology, economics, and sociology journals (Newman 2003c), as well as a number of
books (Barabasi 2002, Buchanan 2002, Watts 2003). Here I review the majogfindings

viewpoints

Viewpoint
Computational Social
Science # Computer Science
+ Social Data

The important intersection of computer science and social science.

HIS VIEWPOINT Is about differ-
ences between computer sci-
ence and social science, and

Hanna Wallach

of this emerging field and discuss briefly their relationship with previous w
social and mathematical sciences.

INTRODUCTION

“machine learning is not a be-a
solution.”

Building on a long tradition of network analysis in sociology and anthropology
(Degenne & Forse 1994, Scott 2000, Wasserman & Faust 1994) and an even longer
history of graph theory in discrete mathematics (Ahuja et al. 1993, Bollobas 1998,
West 1996), the study of networks and networked systems has exploded across
the academic spectrum in the past five years. Spurred by the rapidly growing
availability of cheap yet powerful computers and large-scale electronic datasets,

A Hierarchy of Limitations of ML
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by training. That said, my recent work
has been pretty far from traditional
machine learning. Instead, my focus
has been on computational social sci-
ence—the study of social phenomena
using digitized information and com-
putational and statistical methods.
For example, imagine you want to
know how much activity on websites
such as Amazon or Netflix is caused by | based adjustments to each senator’s | tional social science sits at the inter-
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> Which social science?

> |s a "hard"” version of social science compatible with
modeling (econometrics, political science,
quantitative sociology, biological anthropology, etc.)

> Enriches ML and avoid pitfalls, but is not the most
valuable and profound offering

> Critical sociology, cultural anthropology, critical race
studies, feminist studies, STS: not just about the
world, but about the very ways we see and interact with
the world
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e > The original

Toward a Critical Technical Practice:

Lessons Learned in Trying to
Reform Al

¥ Reflection

Philip E. Agre
University of California, San Diego
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> What is “critical’”?

> "l finally comprehended the difference between
critical thinking and its opposite. Technical people
are not dumb, quite the contrary, but technical
curricula rarely include critical thinking in the sense |
have in mind. Critical thinking means that you can,
so to speak, see your glasses. You can look at the
world, or you can back up and look at the framework
of concepts and assumptions and practices through
which you look at the world.” (Agre, 2000)
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» Backing up in ML

> Back up and ask, what is the framework of
concepts and assumptions and practices
through which ML looks at the world?

> ldentify this to understand the limits, and
proper use, of ML

> Start from the very beginning: quantification.
End at ML-specific model validation.
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> Larger goals of this work

> Communication oriented to solutions

— “"Burn it all down"” on one side; totalitarian
quantification + optimization on the other
> Critics can be specific about what they object
to, not just “ML is quantitative therefore evil”

> ML can see how critiques show points of
potential failure that can be addressed, rather
than dismissing critiques
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£l > Pitfalls

> The fallacy of alternatives (Agre, 1997): "Their stance
was: if your alternative is so good then you will use it
to write programs that solve problems better than
anybody else's, and then everybody will believe you.”

> Too limited to say, “social science can help solve a
problem better”

> Or even: “social science can help you identify the
right problems”

> Critical social science will reframe what even counts
as a problem!
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¥ Future steps

A Hierarchy of Limitations of ML 50 of 61 https://MominMalik.com/msrne2019.pdf



> Future steps

> Many (but not all) of the problems can be alleviated
(but not solved) through mixed methods:
incorporating alternatives (qualitative research,
statistical modeling, experimental design, etc.)

> But mixed methods are hard!

> We will need to develop both intellectual frameworks
for mixed methods ML (e.g., purposeful division of
labor), as well as cultural practices within ML for
actually doing it. Future work, guided by this attempt
to comprehensively map key points of failure!
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» Limitations

> Focused on research, not industry; some
things (especially implementation, which
industry may know lots about) may not be
meaningful critiques

> Still developing what the intellectual
framework would be, and what the cultural
practices would be!
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» Thank you!
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¥ “True” models predict worse
> A linear data-generating process.
2
y NN(ﬁpo + B4Xq, O I)

> Wu et al. (2007): Fitting only X, has lower
expected MSE than fitting the model that
generated the data when:

55 quf (I, - H,)X,3, < qo°
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> Proposal: Precise language

> Predictthetikelhood: Calculate the likelihood

> Bredicttherick, predicttheprobabiiy
Estimate the risk, estimate the probability

> Prediction, predicted: Fitted value, fitted

> Wepredict: We detect, we classify, we model

> Xpredicts¥: X is correlated with Y
> X-predictsY—ceterisparbus (partial correlation):

X is associated with Y
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> Proposal: Alternative language

> Retrodiction
> Backtesting (retrodiction for testing)

>

>
>
>
>

A Hierarchy of Limitations of ML

n-sample VS.
nterpolation vs.
Diagnosis VS.

Retrospective vs.

Hindcasting (backtesting for forecasting)

> Out of-sample
> Extrapolation
> Prognosis

> Prospective
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¥ Causality

¥ Backup slides

» But language not enough

Pseudo-Mathematics and Financial
Charlatanism: The Effects of
Backtest Overfitting on Ninca of -oredict” has not

prevented financial

OUt'Of'Sample PEI'fOI'maIlCe analysts from unwitting

David H. Bailey, Jonathan M. Borwein,
Marcos Lopez de Prado, and Qiji Jim Zhu

Another thing I must point out is that you cannot
prove avague theory wrong. [...] Also, if the process
of computing the consequences is indefinite, then
with a little skill any experimental result can be
made ta lnok like the exnected concenmencec
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overfitting)

“training set” in the machine-learning literature).

The OOS performance is simulated over a sample
notused in the design of the strategy (a.k.a. “testing
set”). Abacktestis realisticwhen the IS performance
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¥ Cross-
validation

¥ Backup slides

» Overfitting on the test set

> Re-using a test set can

overfit to the test set!
(Dwork et al., 2015)

Repeated tries improved
“visible test” ranking

> Happens in Kaggle, w visblete |
Which has public ’ " 2I‘\]lumberofzgubmissio‘r‘:?s ” ”
leaderboard (visible SR
throughout) and private
leaderboard (revealed
only at end of But “hidden test” (true)

o ot ranking went down!

competition) A N T B

Number of Submissions
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» Matrix bias-variance decomposition
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¥ Critical technical practice (1)

> Agre (1997) describes "mov[ing] intellectually from Al to the
social sciences — that is, to stop thinking the way that Al people
think, and to start thinking the way that social scientists think...”

> "“Criticisms of [Al], no matter how sophisticated and scholarly
they might be, are certain to be met with the assertion that the
author simply fails to understand a basic point... even though |
was convinced that the field was misguided and stuck, it took
tremendous effort and good fortune to understand how and
why... | spent several years attempting to reform the field by
providing it with the critical methods it needed — a critical
technical practice.”
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<%8 » Critical technical practice (2)

> "“As an Al practitioner already well immersed in the literature, | had
incorporated the field's taste for technical formalization so thoroughly
into my own cognitive style that | literally could not read the literatures
of nontechnical fields at anything beyond a popular level. The problem
was not exactly that | could not understand the vocabulary, but that |
insisted on trying to read everything as a narration of the workings of
a mechanism.”

> "“At first | found [nontechnical] texts impenetrable, not only because of
their irreducible difficulty but also because | was still tacitly attempting
to read everything as a specification for a technical mechanism... My
first intellectual breakthrough came when, for reasons | do not recall, it
finally occurred to me to stop translating these strange disciplinary
languages into technical schemata, and instead simply to learn them
on their own terms.”
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¥ Critical technical practice (3)

> "| still remember the vertigo | felt during this
period; | was speaking these strange
disciplinary languages, in a wobbly fashion at
first, without knowing what they meant --
without knowing what sort of meaning they

had.”

> "in retrospect this was the period during which
| began to ‘wake up’, breaking out of a
technical cognitive style that | now regard as
extremely constricting.”
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e > Critical technical practice (4)

> "Without the idea that ideologies and social
structures can be reproduced through a myriad of
unconscious mechanisms such as linguistic forms
and bodily habits, all critical analysis may seem like
accusations of conscious malfeasance. Even
sociological descriptions that seem perfectly
neutral to their authors can seem like personal
insults to their subjects if they presuppose forms of
social order that exist below the level of conscious
strategy and choice.”
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