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Motivation

Concern:

e |Industry is years ahead of social science in having access to data
and computational expertise

e |ndustry has used opportunity to make enormous findings and
advances (Savage & Burrows, 2007)

Reality:

e Models that ‘work’ in a commercial context may be quite
uninteresting for academics (Burrows & Gane, 2006)

e Computational modeling (i.e., machine learning) focuses on
prediction, not explanation (Shmueli, 2010; Breiman, 2001)*

e Best-fitting model may not be “true” (Shmueli, 2010)
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Tasks in CS/industry

e Inferring location from noisy data (map apps on phones)
e Recommender systems

— For movies, people, shopping, restaurants, social events
e Geographic topic analysis

— Words associated with regions “in order to enrich the
functional description of locations for designing advanced
location-based services” (Gao & Liu, 2015)

e Event Detection

— Automate detection of natural disasters, sports events
e Simulation for testing

— “Realistic” behavior to test technical infrastructure
e Location prediction
— Forecasting demand, or recommendation systems again

Social media and computational models of mobility Momin M. Malik Page 6 of 24



Carnegie Mellon University
School of Computer Science

Types of data

e GPS location logs
e Cell phone tower access logs

— May be combined with call logs
e Social media data:

— Anything that allows “check-ins”: Foursquare, subsets
of Twitter, Facebook

— Also known as:
e Location-based social networks (LBSN)
e Volunteered Geographic Information (VGI)
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Social Media Data

Existing research into biases and problems
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Problems

Problems are massive (Tufekci, 2014; Ruths & Pfeffer, 2014).

We must think about the context in which the data are generated!
(van Dijck, 2013; Gehl, 2014)

e People sell bots to inflate metrics (Donath 2008); lots of spam
(Thomas et al., 2011; 2013) makes data messy

e |diosyncratic behaviors and conventions (boyd et al., 2010; Java et
al., 2007; Kwak et al., 2010)

e Unreliable data access (Morstatter et al., 2013)

e Platform effects (see my talk tomorrow!)

e |nternational differences (Poblete et al., 2011)

e Changes over time (Liu et al., 2014; van Dijck, 2013)
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Representativeness

Work comparing Census data to Twitter data:

Mislove et al. (2011): Uneven distribution in US based on self-
identified location on Twitter

Sloan et al. (2013): Gender distribution similar to UK Census

Hecht and Stephens (2014): Bias in US geotagged tweets use
towards urban areas

Longle et al. (2015): Overrepresentation of young males, White
British users in London geotagged tweets

Malik et al. (2015): Overrepresentation of geotagged Tweets in
block groups with young users, high Asian populations, black
populations, Latino populations

Note: this work assumes that Census data are the “ground truth”!
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Consequences

All these biases matter!

Twitter opinion does not match public opinion (Mitchell & Hitlin,
2013): i.e., conclusions based on social media data are “wrong”

Can correct for population (Zagheni & Weber 2015), but others?

Even if models are fitted to social media/real-world

correspondences, such correspondences (and hence the models)
can break down under a slight change in context (Cohen & Ruths,
2013, “Classifying Political Orientation on Twitter: It’s not Easy!”)

“Prediction” is a technical term that means “fitted values:” a
model that “predicts” well is actually just a model that fits well.

Model fit is a heuristic for future performance, not a guarantee
(Gayo-Avello 2013; 2012a; 2012b); and a lack of causal

understanding makes good future performance less likely
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Alternative: Social media data as a “test bed”

Video, “Tracking Malte Spitz”:
https://www.youtube.com/watch?v=J1EKvWot-3c
Malte Spitz / Die Zeit / Future Journalism Project Media Lab, 2010
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Places to apply?

Population,,, = Population,
+ (Births, — Deaths,)
+ (Immigration, — Emigration,)
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Places to apply?

Population,,, = Population,
+ (Births, — Deaths,)
+ (Immigration, — Emigration,)

How can we better characterize migration? Are there
already relevant models in computer science?

(Thanks to Ridhi Kashyap, Katharina Kinder-Kurlanda)
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Mobility Models

What does computer science/engineering do around mobility? How
does it all work?
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Characterizing mobility

e Currently, we found no models that take continuous
paths and use them to create “mobility profiles”

e Most models, at some point, discretize or make bins
(image: Bayir 9)
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Figure 10: Time distribution for end locations on map for user X
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Basic task: generating “realistic” behavior

e Simplest model is that of a “random walk” process
— Unrealistic

e Can also use models for describing particles, “Brownian motion;”
still not realistic

e “Lévy walks” are between the two (image: Rhee et al., 2011)
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Fig. 1. Sample trajectories of (a) BM, (b) Levy walk, and (c) RWP.
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Inferring location
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Inferring trajectories

e Can infer trajectories from noisy point data

e Use a Markov Model that represents transitions between
states

e (Keywords: Hidden Markov Model, State Space Model,
Kalman Filter)
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Transition Matrix

e Key component of Markov Models is the transition
matrix, which represents transitions between states

e States can be locations as well! (image: Eagle et al., 2009)

to

£ Capital | Rural | Urban
rom

Capital | 1993 341 279

Rural 359 863 225

Urban 535 368 1014
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Transition Matrix

e |nterpret entry jj as from row i to column .

e Row-normalize counts (divide each row by the row sum)

e Normalization gives frequencies, an estimate of
probabilities

fmmto Capital | Rural | Urban
comnn| 52| 211 | 27
MEEIE
urban | 207 | Jory | 1919
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Transition Matrix

e |nterpret entry jj as from row i to column .

e Row-normalize counts (divide each row by the row sum)

e Normalization gives frequencies, an estimate of
probabilities

to

£ Capital | Rural | Urban
rom

Capital | .763 | .131 | .107

Rural .248 .596 .155

Urban 279 .192 .529
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Conclusions

Figure 10: Time distribution for end locations on map for user X

Be careful before using social
media datal

Good news: Social science is
not replaced

Bad news: Social science may
have little to contribute to the
goals of CS

There are representations in
computer science (and
statistics) that may be very
useful for demography:
specifically, transition matrices
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Thank you! Questions?

momin.malik@cs.cmu.edu
http://mominmalik.com/smdr2016.pdf
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