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Abstract
Even when external researchers have access to social media
data, they are not privy to decisions that went into platform
design—including the measurement and testing that goes into
deploying new platform features, such as recommender sys-
tems, that seek to shape user behavior towards desirable ends.
Finding ways to identify platform effects is thus important
both for generalizing findings, as well as understanding the
nature of platform usage. One approach is to find temporal
data covering the introduction of a new feature; observing
differences in behavior before and after allow us to estimate
the effect of the change. We investigate platform effects using
two such datasets, the Netflix Prize dataset and the Facebook
New Orleans data, in which we observe seeming discontinu-
ities in user behavior but that we know or suspect are the re-
sult of a change in platform design. For the Netflix Prize, we
estimate user ratings changing by an average of about 3% af-
ter the change, and in Facebook New Orleans, we find that the
introduction of the ‘People You May Know’ feature locally
nearly doubled the average number of edges added daily, and
increased by 63% the average proportion of triangles created
by each new edge. Our work empirically verifies several pre-
viously expressed theoretical concerns, and gives insight into
the magnitude and variety of platform effects.

Introduction
In social media data, the design and technical features of
a given platform constrain, distort, and shape user behav-
ior on that platform, which we call the platform effects.
For those inside companies, knowing the effect a particu-
lar feature has on user behavior is as simple as conduct-
ing an A/B test (i.e., a randomized experiment), and in-
deed such testing is central to creating platforms that shape
user behavior in desirable ways. But external researchers
have no access to the propriety knowledge of these tests
and their outcomes. This is a serious methodological con-
cern when trying to generalize human behavior from social
media data: in addition to multiple other concerns, observed
behavior could be artifacts of platform design. This concern
has thus far only been raised theoretically (Tufekci 2014;
Ruths and Pfeffer 2014), and not yet addressed empirically.
Even theoretically, the problem is deeper and more sub-
tle than has been appreciated; it is not just a matter of
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non-embedded researchers having access to the data (Sav-
age and Burrows 2007; Lazer et al. 2009; Huberman 2012;
boyd and Crawford 2012), but also that even when re-
searchers have access, without full knowledge of the plat-
form engineering and the decisions and internal research that
went into design decisions, the data can be systematically
misleading.

One way to study and quantify platform effects as an ex-
ternal researcher is to look for available data that include
a significant platform change. Making the assumption that,
in absence of the exogenous shock (the change) the previ-
ous ‘trend’ would have remained the same, we can apply the
observational inference method of regression discontinuity
design (Imbens and Lemieux 2008; Lee and Lemieux 2010;
Li 2013). While not as certain as experimental design, ob-
servational inference methods are the best available way for
outside researchers to understand the effects of platform de-
sign.

We select two data sets: the Facebook New Orleans data
collected by Viswanath et al. (2009), and the Netflix Prize
data, described by Koren (2009b). This is no longer publicly
available since the close of the Netflix prize, although the
terms of use do not mention any expiration on use for those
who have already downloaded it.

In the Netflix Prize data set, Koren (2009b), a member
of the team that ultimately won the prize (Koren 2009a),
points out a curious spike in the average ratings in early
2004. As such a change has modeling implications (previ-
ous data should be comparable in order to properly use for
training purposes), he explores the possible reasons for this,
ultimately identifying an undocumented platform effect as
the most likely driver. Then, the Facebook New Orleans data
contain an identified, and ideal, example of a platform ef-
fect: a clear exogenous shock and a dramatic difference af-
ter, through the introduction of the “People You May Know”
(PYMK) feature on March 26, 2008. This discontinuity is
only mentioned in Zignani et al. (2014); the original paper
of the data collectors (Viswanath et al. 2009) does not men-
tion it (although, in another example of a platform effect in
collected data, they do note that on July 20, 2008, Facebook
launched a new site design that allowed users to “more eas-
ily view wall posts through friend feeds” which they use to
explain a spike in wall posts towards the end of the collected
data).



In sum, we re-analyze the Netflix Prize and Facebook
New Orleans data to study possible platform effects in the
data. The contributions of this paper are:
• To empirically verify previously expressed theoretical

concerns about the possible effects of platform design on
the generalizability and external validity of substantive
(social scientific) conclusions;

• To import into the social media research community a sta-
tistical model that allows quantitative estimation of plat-
form effects;

• To quantify two specific cases of common platform ef-
fects, the effect on a social network of a triadic closure-
based recommender system and the effect of response
item wordings on user ratings.

Background and Related Work
Authors from multiple disciplines (Tufekci 2014; Ruths and
Pfeffer 2014) have expressed methodological concerns that
the processes found in data derived from social networking
sites cannot be generalized beyond their specific platform.
Most troublingly, the same things that would cause results to
not generalize, such as nonrepresentative samples, idiosyn-
cratic technical constraints on behavior, and partial or un-
even data access, are generally unknown and undetectable
to an outside researcher (and potentially even to engineers
and embedded researchers). Some innovative methods of
data comparison have been used to derive demographic in-
formation in social media data (Chang et al. 2010; Mislove
et al. 2011; Sloan et al. 2013; Hecht and Stephens 2014;
Longley, Adnan, and Lansley 2015; Malik et al. 2015) and
to identify biases in public APIs (Morstatter et al. 2013;
Morstatter, Pfeffer, and Liu 2014), but platform effects re-
main empirically unaddressed. Part of the problem is that
social media platforms are private companies that seek to
shape user behavior towards desirable ends, and do so in
competition with one another (van Dijck 2013; Gehl 2014);
thus, the details of features and functionality which success-
fully guide user behavior are understandably proprietary in
ways that representation and data filtering need not be. The
results of research experiments, most notably Kramer, Guil-
lory, and Hancock (2014), deal only indirectly with platform
design and engineering. Outside accounting via testing in-
puts (Diakopoulos 2014) is an important way of identifying
overall effective outcomes, but such cross-sectional audits
lack a baseline to know how much a given platform design
successfully shapes behavior.

Instead, one way to study the problem is the economet-
rics approach of finding cases that can be treated as ‘natural
experiments’ (Angrist and Pischke 2008; Gelman 2009). We
have located two such instances, the Facebook New Orleans
data and the Netflix Prize data, where known or suspected
change in the platform led to a shift, documented in publicly
available data.

Zignani et al. (2014) used the data of the Facebook New
Orleans network (Viswanath et al. 2009), along with data
from the Chinese social networking site Renren, to investi-
gate the delay between when it is possible for an edge or tri-
angle to form (respectively, when a node enters the network,

and when two nodes are unconnected but share a neighbor)
and when it actually forms, which they respectively term link
delay and triadic closure delay. They note that on March
26, 2008, there is a drastic increase in the number of links
and triangles (our version of those plots given in figs. 1 and
2), corresponding to the introduction of Facebook’s “People
You May Know” (PYMK) functionality. While this was not
the central investigation of their paper, they used it as an op-
portunity to see how an external feature changed their pro-
posed metrics. They find that this increase consists primarily
(60%) of links delayed by over 6 months, and also includes
many (20%) links delayed by more than a year. They con-
tinue to note, “Although the link delay [metric] reveals inter-
esting characteristic in edge creation process, it is not able
to capture the reason behind it, i.e. which process causes the
observed effects or which algorithms were active in the early
rollout of the PYMK feature.” However, from their finding
that far more triangles were created than edges (based on
their fig. 2b, the ratio of new triangles to new edges rose
from about 2 before the introduction to about 4 afterwards),
it suggests that the created edges were based heavily on tri-
adic closure. They conclude that the external introduction of
PYMK manipulated a parameter or parameters of the under-
lying dynamic network formation process, and furthermore,
it did not increase the link creation or triadic closure uni-
formly, but with bias towards more delayed links and triads.
While they say they were able to quantify the effects and
impact of the PYMK feature, this did not include estimat-
ing the local average treatment effect, which is our specific
interest.

The goal of the Netflix Prize competition was predic-
tion and not explanation (Shmueli 2010; Breiman 2001), for
which it is not necessary to understand the spike (only to ac-
count for it in a model, in order to effectively use past data
for training). However, checking for data artifacts is funda-
mental for any type of data model, and Koren (2009b) de-
votes some time to investigating an odd spike observed in
average ratings in early 2004, about 1500 days into the data
set (this plot is recreated in our fig. 3). He proposes and ex-
plores three hypotheses:

1. Ongoing improvements in Netflix’s ‘Cinematch’ recom-
mendation technology and/or in the GUI led people to
watch movies they liked more;

2. A change in the wordings associated with numerical rat-
ings elicited different ratings (e.g., perhaps a rating of 5
was originally explained as “superb movie” and then was
changed to “loved it”);

3. There was an influx of new users who on average gave
higher ratings.

By noting that the shift also occurs among users who were
present both before and after the observed increase, he re-
jects the third possibility. He finds some support for the
first possibility from a model that decomposes ratings into
a baseline effect and a user-movie interaction effect (which
corresponds to the extent to which users rate movies “suit-
able for their own tastes”); the interaction effect shows a
smooth increase and the baseline has less variability, but
there is is still clearly a sudden jump in the baseline. He



writes, “This hints that beyond a constant improvement in
matching people to movies they like, something else hap-
pened in early 2004 causing an overall shift in rating scale.”
Note that the change in wordings associated with numerical
ratings is Koren’s guess to what the change was; he specifies
that uncovering exactly what the “something else” was “may
require extra information on the related circumstances.” That
such a change in wording could produce a shift in ratings is
supported by decades of research in survey research into re-
sponse options (Dillman, Smyth, and Christian 2014), but
otherwise no further evidence is given.
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Figure 1: Observed edges added (friendship ties made) in
Facebook New Orleans data.
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Figure 2: Triangles created with the added edges in Face-
book New Orleans data.

Data and Methods
Facebook New Orleans
Viswanath et al. (2009) detail how they collected the Face-
book New Orleans data through a manual crawl of the
New Orleans network, starting from a single user and us-
ing breadth-first search. Considering that Facebook started
as a college-based network, the boundary specification (Lau-
mann 1973) of users who added themselves to the “New
Orleans” network primarily (or those who chose to add it
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Figure 3: Observed daily averages for the Netflix Prize data.

secondarily, perhaps after a college network) may not mean-
ingfully match the college-centric boundaries within which
links actually formed (especially since, as the authors point
out, regional networks have more lax security than univer-
sity networks, which require a valid email address from the
university’s domain). Second, only visible profiles could be
accessed: the authors estimate, by comparison with statistics
from Facebook, that they collected 52% of the users in the
New Orleans network.

The Facebook data come in the form of timestamps of
added edges between 63,731 unique nodes. About 41.41%
of edges do not have a timestamp. On the data download
page, Viswanath et al. (2009) write that “the third column
is a UNIX timestamp with the time of link establishment
(if it could be determined, otherwise it is [blank])” with-
out elaborating on the reasons for missing labels; we make
the assumption that these were the edges already present at
the start of data collection. However, we find a great deal
of repeated edges. Of the 1,545,686 rows of data, there are
only 817,090 unique edges (i.e., 52.86% row are unique,
47.14% are redundant). Breaking it down, of the 640,122
rows that have no timestamp, only 481,368 represent unique
edges, and of the 905,564 rows that have a timestamp, only
614,796 represent unique edges. 88,494 edges are repeated
twice, 728,596 edges are repeated three times, and no edge
is repeated more than three times. We make the decision to
drop these repeated edges, assuming that repetition was the
result of a repeat visit from multiple crawls (and assuming
that timestamps were gathered by the time of detection via
BFS, rather than extracted from profiles).

To the unlabeled edges we assign the minimum time
present among the remaining edges, and for repeated edges
we take their first instance only. Using the igraph library
(Csárdi and Nepusz 2006) we take the initial graph and cal-
culate the number of edges, the number of nodes (i.e., non-
isolates), the number of triangles, and the transitivity. Since
the inter-arrival times are not particularly relevant for our
question, we care only about the change in the relative rate
over time, we aggregate our analyses by day to create time
series: for each day, we add the edges that appeared on that
day and recalculate the graph metrics. After, we also calcu-
late the daily density using 2M/(N2−N) for the number of



nodes N and number of edges M . We then difference each
of these series, and for each day get the number of edges
added, the number of nodes added, the number of new trian-
gles, the change in transitivity, and the change in graph den-
sity. (Note that daily aggregation followed by differencing is
equivalent to a histogram with day-wide bins, as Zignani et
al. [2014] do for the number of triangles and edges.)

Netflix Prize
The Netflix data come in the form of text files for individ-
ual movies, with each line being the rating that a given user
gave along with the date from 1999-11-11 to 2005-12-31.
Following Koren (2009b)’s plot, we take the daily average
in order to see the sudden jump. Examining the number of
ratings (i.e., the number of binned observations) per day, we
find that they increase linearly in log scale. However, un-
til 1999-12-31, ratings are not daily and even when present
are small, whereas from 2000-01-05 (the next day for which
there is data) there are daily ratings in the thousands. We
take only the data on and after 2000-01-05.

Our own investigation pinpointed the discontinuity as oc-
curring on or around March 12, 2004. We could not find any
public record of a platform change at that time nor any clues
in press releases around then, and Netflix did not respond to
a request for further information.

Statistically, the Netflix data are more straightforward as
there is no social network.1 However, the independence as-
sumptions are more complicated; with a single dynamic net-
work as in the Facebook New Orleans data, we can as-
sume that the network-level rate metrics like the number of
added triangles are independent observations across days. If
we only consider the average daily rating, we do not take
into account multiple ratings by the same individual (and,
as Koren [2009b] notes, it is important to correct for differ-
ent baseline average ratings across users, e.g. making sure
an overall ‘stingy’ user’s ratings are comparable to those
of an overall ‘generous’ user). But our interest is not in a
full model of user ratings (predictive or explanatory), only
a model of the average change to user behavior from a
suspected platform effect. That is, we are interested in the
marginal effect for which such dependencies are not rele-
vant, and for which we can invoke the random sampling on
ratings as a guarantee that our estimate will not have biases
in representation.

Causal estimation with discontinuities
Regression discontinuity (RD) design is used to estimate
causal effects in cases where there is an arbitrary (and prefer-
ably strict) cutoff along one covariate. As shown in Hahn,
Todd, and Van der Klaauw (2001), when the appropriate
conditions are met, the treatment is effectively random in
the left and right neighborhoods of the cutoff c. Causal ef-
fects are defined in terms of counterfactuals Y0i (the value
of the response were observation i to not be treated) and Y1i

1Netflix did briefly attempt to add social networking features in
late 2004. However these were discontinued in 2010, with part of
the justification being that fewer than 2% of subscribers used the
service.

(the value of the response were i to be treated); the point
difference between the two at the time of intervention for
treated populations is called the local average treatment ef-
fect (Imbens and Angrist 1994), α. Given an observed Yi,
this is given by

α ≡ E(Y1i − Y0i|Xi = c)

= lim
x↓c

E(Yi|Xi = x)− lim
x↑c

E(Yi|Xi = c) (1)

In the linear univariate case, the model is

Yi = β0 + β1xi + β21(xi > c) + β3xi1(xi > c) + εi (2)

which effectively fits two separate lines, one for each ‘popu-
lation’ before and after the cutoff, with the estimated α̂ being
the difference between the the two fitted lines at the cutoff.
The interest is generally in estimating the causal impact, but
as a specification test (Imbens and Lemieux 2008), the joint
test for H0 : β2 = β3 = 0 corresponds to a null hypoth-
esis that there is no discontinuity. This model and the cor-
responding test may be generalized with higher-order poly-
nomial terms. The model also has a natural nonparametric
extension: separately fit the same smoother on either side of
the discontinuity to estimate the effect, or, test for the dis-
continuity by seeing if confidence intervals overlap.

Note that the exemplars of RD design are not temporal,
and many standard parts of time series modeling are in-
compatible with RD design. For example, a discontinuity
is necessarily nonstationary, and differencing will destroy
it (we fitted ARIMA models, and found that differencing
was indeed necessary), and similarly, a one-sided moving
average smoother applied to both sides of the discontinuity
will leave a gap. We found two alternative methodologies
created specifically around time series, ‘interrupted time se-
ries analysis’ (McDowall et al. 1980; Wagner et al. 2002;
Taljaard et al. 2014) and ‘event studies’ (MacKinlay 1997),
but both are essentially less formal versions of RD design
and still neither account for temporal features (namely, au-
tocorrelation). We also tried Gaussian Process (GP) regres-
sion (Rasmussen and Williams 2005; MacDonald, Ranjan,
and Chipman 2015), as it is able to capture temporal de-
pendencies (Roberts et al. 2012). A squared exponential co-
variance function gave largely similar results, including pos-
terior intervals about as wide as confidence intervals from
other methods (and thus perhaps still not capturing autocor-
relation) when fitting separately to either side of the discon-
tinuity. We note that it may be possible in future work to
adapt covariance functions that account for ‘changepoints’
(Garnett et al. 2010) not just to make predictions in the pres-
ence of discontinuities, but to do causal inference within the
RD framework.

As we are interested in the central tendency rather than on
features of the time series, we prioritize the use of the RD
framework over time series modeling. To apply RD design,
we make the assumption that the respective times at which
People You May Know and whatever change took place in
Netflix were introduced were effectively random. We use
time as the covariate, with the respective cutoffs for the two
data sets of 2008-03-26 and 2004-03-12 (i.e., we code for



the potential discontinuities starting on those days). We ap-
ply both parametric and nonparametric models; for nonpara-
metrics, we use local linear regression as is standard in re-
gression discontinuity design (Imbens and Lemieux 2008)
and is also appropriate for time series (Shumway and Stof-
fer 2011).

While a nonparametric smoother has the advantages of
being able to fit cyclic behavior without including specific
cyclic terms, confidence intervals still fail to capture the ex-
tent of cyclic variance and so are too optimistic even be-
yond not accounting for temporal autocorrelation (Hyndman
et al. 2002). Prediction intervals are an alternative as they in-
clude the overall variance, but are not straightforward to cal-
culate for smoothers (or generalized linear models, which
we use for the count data of daily added edges). Thus, in
cases where we can use linear models, we prefer those. An-
other alternative, which we use for the Netflix data and for
edge counts in the Facebook data, is to use local linear quan-
tile regression (Koenker 2005) to get tolerance (empirical
coverage) intervals, and specifically, using the interval be-
tween a fit to 5% and to 95% to get a 90% tolerance inter-
val (we found too much noise for fits at 97.5% and 2.5%
to use a 95% tolerance interval). For consistency, when we
do this we also use quantile regression for the central ten-
dency (which corresponds to using the median instead of the
mean), which also has the advantage of being more robust to
outliers.

Results and Discussion
Netflix Prize data
First, we note that the number of daily ratings increases over
time (fig. 4), which corresponds to decreasing variance in the
time series plot, suggesting use of weighted least squares.
Weighting by the number of daily ratings (so that the days
with more ratings are counted more heavily) improved diag-
nostics across the parametric models we considered; how-
ever, we found that the addition of polynomial terms up to
and even past 7th order continued to be significant, leading
us to prefer the nonparametric approach that can capture the
cycles without becoming cumbersome. In fig. (5), we show
the results of the local linear quantile regression. As we can
see, at the cutoff the two 90% tolerance intervals do not over-
lap, allowing us to reject the null hypothesis that there is no
discontinuity at the 0.10 level.

To test if the model detects jumps at non-discontinuity
points, we tried each day as a cutoff. Other than our actual
discontinuity, the only points where the tolerance intervals
did not overlap were two points before the cutoff we used
(March 10th and 11th) and one day after (March 13th). Since
we had initially located this date through manual (graphical)
investigation, and the choice was not unambiguous within
several days, it is unsurprising that the model picks this up
as well. While this ambiguity is likely a matter of noise, plat-
form engineers commonly deploy new features gradually to
decrease risk, so it is also possible that the ambiguity is a
gradual rollout that the model is also detecting.

Sensitivity to the smoothing bandwidth (the tuning pa-
rameter which controls the size of the neighborhood used in

local fitting) is a concern for estimating the causal effect, so
as is recommended, we report the estimates across multiple
bandwidths. From 5-fold cross-validation, the optimal band-
width of 6 (i.e., using kernel K(x∗, xi) = exp{−.5((x∗ −
xi)/6)

2}), performed poorly under specification testing,
identifying many discontinuities. Larger bandwidths (where
the estimator tends towards linear) performed better, but at
large bandwidths, again many discontinuities were identi-
fied. This is not ideal but unsurprising given the loss func-
tion used in quantile regression; quantiles are less swayed
by extreme values, such that the non-overlap of tolerance
intervals properly capture that there is a discontinuity even
far from the actual discontinuity. The estimate of the causal
effect may still be good, but with the failure of the specifica-
tion testing at both low and high bandwidths, we report only
within the range that performed well.

We estimate the local average treatment effect, the av-
erage amount by which the platform change resulted in a
change in user ratings, as 0.118 from a bandwidth of 25 (pic-
tured in fig. 5), 0.126 from a bandwidth of 50, 0.124 for a
bandwidth of 75, and 0.119 for a bandwidth of 100. Con-
sidering the ratings prior to the cutoff had a mean of around
3.44, these amounts are a substantial increase, and are about
3% of the total possible range of ratings (from 1 to 5). This
is a less involved case than Facebook, since movie prefer-
ences are a relatively low stakes phenomenon, but it shows
the application of regression discontinuity. If the cause of the
discontinuity is indeed a change in wordings, it shows that,
just as in survey research, a change to the format changes
the distribution of answers; but unlike in surveys, with large-
scale online (streaming) systems, changes become visible as
discontinuities in time.
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Figure 4: The number of Netflix ratings increases over time
(y-axis shown in log scale); and, we can observe from fig.
(3), the variance decreases over time, suggesting using the
counts as weights. The fitted local linear smoother, which
we used for weights, is shown in black. The bandwidth of
.026 was selected via 5-fold cross validation.

Facebook New Orleans data
Fig. (6) shows the discontinuity in the Facebook New Or-
leans data across four graph metrics. In addition to the daily
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Figure 5: The solid line shows the local linear fit for the me-
dian Netflix ratings. The dashed lines give a fitted 90% toler-
ance interval, from local linear quantile fits to 5% and 95%.
The intervals on both sides of cutoff do not overlap.
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Figure 6: For the Facebook New Orleans data, the daily
added edges and triangles created (top left and right, respec-
tively), and the daily change in transitivity and graph density
(bottom left and right, respectively).

counts of the number of added edges and added triangles as
examined by Zignani et al. (2014), the discontinuity is pro-
nounced in the transitivity and the density as well (although
the units of these are so small as to not be particularly in-
terpretable, so we do not estimate a local average treatment
effect).

For the number of edges, we first used a fifth-order poly-
nomial Poisson regression (not pictured), which had excel-
lent regression diagnostics, from which we estimated a local
average treatment effect of 356. This is more than a dou-
bling of the pre-cutoff daily average of 314. However, the
confidence intervals from the Poisson regression were very
narrow and performed poorly under specification testing (as
did bootstrap prediction intervals, which were very wide),
so we also made fitted tolerance intervals using local linear
quantile regression as with the Netflix data, shown in fig.
(8). Again, the optimal bandwidth found from 5-fold cross-
validation was small and performed poorly under specifica-
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Figure 7: The daily added edges and triangles have a close
relationship in the Facebook data. Black circles are time
points before 2008-03-26, and red triangles are time points
afterwards.
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Figure 8: A local linear fit for the median number of edges
added daily in Facebook New Orleans. The dashed lines give
a fitted 90% tolerance interval, from local linear quantile fits
to 5% and 95%. The intervals on both sides of cutoff do not
overlap.

tion testing, as did large bandwidths (tending towards lin-
ear). Reporting within the range that performed well under
testing, we estimate the local average treatment effect as 319
from a bandwidth of 25 (pictured), 278 for a bandwidth of
50, 228 for a bandwidth of 75, and 201 for a bandwidth of
100.

As the number of edges and triangles are closely related
(fig. 7), we follow Zignani et al. (2014) in taking the ra-
tio of triangles to edges. This represents the average num-
ber of triangles created by each added edge, and captures
the extent of triadic closure on a scale more interpretable
scale than that of changes in transitivity (which are in the ten
thousandths). For a parametric model with an indicator for
the discontinuity as described in eqn. (2), up to fourth-order
polynomial terms were significant additions to the model in
partial F tests. The fit is shown in fig. (9), which estimates
a local average treatment effect of 3.85. This is even more
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Figure 9: A fourth-order polynomial regression model fitted
to the daily ratio of added triangles to added edges in Face-
book New Orleans. The solid line is the fit, the dotted lines
close to the solid line give a 95% confidence interval, and
the dashed line give a 95% prediction interval.

dramatic than the effect in Netflix; given that the mean ratio
was estimated at 6.03 before the jump, this is an increase of
63.8%. For specification testing, when fitting curves sepa-
rately to either side for each timepoint, the prediction inter-
vals are disjoint only at seven consecutive times (i.e., seven
points could be considered discontinuities); from two days
before the date of the introduction of the PYMK feature to
four days after, which we can attribute to the magnitude of
the discontinuity.
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Figure 10: Another potential discontinuity, seen amidst
cyclic behavior in the volume of geotagged tweets collected
in the US in 2014.

Conclusion
For much of data analysis, discontinuities (such as from
abrupt platform changes in social media) are seen as inci-
dental, or annoyances to be corrected (Roggero 2012). In-
deed, they appear in the literature as curiosities or asides.
However, given the theoretical concerns about the nature of
social media data, they can give valuable insights. Our find-

ing about the 3% change in average Netflix ratings echoes
work in survey research about response item wordings in
a different setting and with different sort of data, quan-
tifying how much we might expect a platform change to
shift a baseline. For the Facebook New Orleans data, the
finding is even more dramatic and widely applicable: we
now have a sense that the introduction of a triadic closure-
based recommender system can nearly double the rate of
link creation. Furthermore, it changes the nature of the cre-
ated links (focusing on closing triads), which has repercus-
sions for the graph structure, seen for example in the changes
in density. This provides an empirical extension of a con-
cern raised by Schoenebeck (2013) about how variation in
technology adoption creates online social networks that dif-
fer systematically from the underlying social network: from
our results, we see it is not just the process of joining so-
cial networking sites that creates observed network prop-
erties, but also the ways in which platforms design influ-
ences users. Multiple works have considered whether net-
work metrics of large online social networks differ from
those of previously studied social networks (Corten 2012;
Quercia, Capra, and Crowcroft 2012; Ugander et al. 2011;
Mislove et al. 2007); we can continue to theorize how dif-
ferences result from platform effects, usage patterns, and de-
mographic representation, rather than from online platforms
being a superior way to measure social networks.

There are concerns about what social media ties even rep-
resent (Lewis et al. 2008), with some authors pointing to
interactions over ties (Viswanath et al. 2009; Romero et al.
2011; Wilson et al. 2012; Jones et al. 2013) as more mean-
ingful than the existence of ties. But our results show that
the problem is not just one of ties not being a rich enough
measure, but that they a non-naturalistic measure of social
relationships, and furthermore, their existence determines
visibility and access and thereby what activity happens. As
people accept suggested links and begin interacting, the un-
derlying phenomenon (the relationships and the network ef-
fects) changes, whether for good (Burke and Kraut 2014)
or ill (Kwan and Skoric 2013). On Netflix, if changes affect
different movies differently, it has consequences for mod-
eling user behavior preferences. Beyond research concerns,
there are economic benefits for the creators of movies that
benefit from platform changes. Lotan (2015) observed this
potentially happening in Apple’s App Store, where what ap-
peared to be an (unannounced, undocumented) engineering
change in the search results ranking led to changes in app
sales.

Regression discontinuity design has a rich literature, and
there are likely many other case to which to apply it in social
media data. For example, Li (2013) identified Yelp ratings
being rounded to the nearest star as an opportunity to ap-
ply RD design. As another example, in geotags we collected
from the US in 2014, there was a sudden decrease (fig. 10)
on September 18th, the same day Twitter released signifi-
cant updates to profiles on Twitter from iPhone.2 Other such

2“A new profile experience on Twitter for iPhone,” September
18, 2014, https://blog.twitter.com/2014/a-new-profile-experience-
on-twitter-for-iphone, accessed 1/2016.



examples can allow outside researchers to start building up
a public body of knowledge about the ways in which plat-
form design are responsible for observed behavior. Exten-
sions to regression discontinuity are also relevant, for exam-
ple in how Porter and Yu (2015) develop specification tests
into tests for unknown discontinuities.

Social media data have been compared to the microscope
in potentially heralding a revolution in social science akin
to that following the microscope in biology (Golder and
Macy 2012). This metaphor may have a deeper lesson in
a way that its advocates did not expect: history of science
has shown (Szekely 2011) that it was not a simple process to
connect the new instrument, with its multiple shortcomings,
to the natural objects it was supposedly being used to study.
It took centuries of researchers living with the microscope,
improving the instrument but also understanding how to use
it (e.g., recognizing the need for staining, or the importance
of proper lighting), that microscopes became a firm part of
rigorous, cumulative scientific research. We would hope that
social media data will not take as long, but at the same time,
it is as necessary as ever to question the relationship between
the novel instrument and the object of study.
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