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 Preliminaries 

  I am not a philosopher 

Models, not algorithms 

  Decision trees are both interpretable and 
explainable under any proposed definition 

  Will use Titanic dataset: survival for each 
person aboard with covariates of age, sex, 
passenger class, fare 
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 Decision tree for survival on Titanic 
sex

age pclass

fare

age

fare

fare

male

3rd

< 15 ≥ 15

female

 < 6.5 ≥ 6.5 1st,2nd

 < 23 ≥ 23

 < 17

 < 7.9 ≥ 7.9

≥ 17
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 Overview 

  Interpretability is the wrong conversation to be 
having for just use of machine learning. 
Causality is the real issue 
  Interpretability of a non-causal model is 

actually useless 
  “Prediction policy problems” would be cases for 

just use of non-causal models 
  Maybe no such problems actually exist 
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 Breiman and the “two cultures” (2001) 
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  Explanations of models seem to be about 
the world 

  Decision list: interpretable and explainable 
Lethan, Rudin et al.: “For example, we predict 
that a passenger is less likely to survive than 
not because he or she was in the 3rd class.” 
  “Because” the model, or “because” the world?  

if male and adult then survival probability 21% (19%–23%)
else if 3rd class then survival probability 44% (38%–51%)
else if 1st class then survival probability 96% (92%–99%)
else survival probability 88% (82%–94%)

9 of 43 

Introduction 

Machine 
learning vs. 
statistics 

The problem 
with 
explainable 
models 

A decision 
tree for 
Titanic 
survival 

The problem 
with 
“prediction” 

Prediction vs. 
causal 
explanation 

“Prediction 
policy 
problems” 



Machine learning for social scientists Slides and draft: https://MominMalik.com/ier2019.pdf 

  But models are correlations, not causes 

  Finale Doshi-Velez & Been Kim: “one can provide a feasible 
explanation that fails to correspond to a causal structure, 
exposing a potential concern.” 

  Rich Caruana et al.: “Because the models in this paper are 
intelligible, it is tempting to interpret them causally. Although the 
models accurately explain the predictions they make, they are 
still based on correlation.” 

  Zachary Lipton: “Another problem is that such an interpretation 
might explain the behavior of the model but not give deep insight 
into the causal associations in the underlying data… The real goal 
may be to discover potentially causal associations that can guide 
interventions.” 
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 E.g.: Trees are interpreted causally 

Breiman: “A project I worked on in the late 1970s was 
the analysis of delay in criminal cases in state court 
systems... A large decision tree was grown, and I 
showed it on an overhead and explained it to the 
assembled Colorado judges. One of the splits was on 
District N which had a larger delay time than the 
other districts. I refrained from commenting on this. 
But as I walked out I heard one judge say to another, 
‘I knew those guys in District N were dragging their 
feet.’”  
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 But trees are not causal 

  Is being in District N correlated with other 
variables? 
  E.g., fewer resources? 
  If so, maybe it’s not the district but the 

resources that causes delays 
  Causal question: would other districts have the 

same delay if given the same (lack of) 
resources? 
  But decision trees split on whatever is optimal 
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 Wish list for interpretability 

  Face validity as a way to check the model 

  Anticipate where the model might break 
down (e.g., when it fails face validity) 

  Use domain knowledge to ‘fine-tune’ the 
model 
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  Female, 3rd class less likely to survive 
because of higher fare?  

≥ 14.87

male

≥ 6.5 3rd

≥ 23.35

< 14.87

female

 < 6.5 1st,2nd

 < 23.35

 < 16.5

 < 7.888

≥ 16.5

≥ 7.888

≥ 14.87

Sex

Age Pclass

Fare

Age

Fare

Fare

Died Lived

Died

Died Lived

Lived

Lived

Lived
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  Lacks face validity, but holds on test data 

≥ 14.87

male

≥ 6.5 3rd

≥ 23.35

< 14.87

female

 < 6.5 1st,2nd

 < 23.35

 < 16.5

 < 7.888

≥ 16.5

≥ 7.888

≥ 14.87

Sex

Age Pclass

Fare

Age

Fare

Fare

Died Lived

Died

Died Lived

Lived

Lived

Lived
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  Converse: has face validity, but fails to 
generalize? 
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  Yes. Interpretability doesn’t help anticipate 
breakdowns 
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  Interpretations to ‘fine-tune’ model? 
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 Model is already optimally tuned 

≥ 14.87
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≥ 16 3rd
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 “Predict” the future? 
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Predicting the Future With Social Media
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Abstract—In recent years, social media has become ubiquitous
and important for social networking and content sharing. And
yet, the content that is generated from these websites remains
largely untapped. In this paper, we demonstrate how social media
content can be used to predict real-world outcomes. In particular,
we use the chatter from Twitter.com to forecast box-office
revenues for movies. We show that a simple model built from
the rate at which tweets are created about particular topics can
outperform market-based predictors. We further demonstrate
how sentiments extracted from Twitter can be further utilized to
improve the forecasting power of social media.

I. INTRODUCTION

Social media has exploded as a category of online discourse
where people create content, share it, bookmark it and network
at a prodigious rate. Examples include Facebook, MySpace,
Digg, Twitter and JISC listservs on the academic side. Because
of its ease of use, speed and reach, social media is fast
changing the public discourse in society and setting trends
and agendas in topics that range from the environment and
politics to technology and the entertainment industry.

Since social media can also be construed as a form of
collective wisdom, we decided to investigate its power at
predicting real-world outcomes. Surprisingly, we discovered
that the chatter of a community can indeed be used to make
quantitative predictions that outperform those of artificial
markets. These information markets generally involve the
trading of state-contingent securities, and if large enough and
properly designed, they are usually more accurate than other
techniques for extracting diffuse information, such as surveys
and opinions polls. Specifically, the prices in these markets
have been shown to have strong correlations with observed
outcome frequencies, and thus are good indicators of future
outcomes [4], [5].

In the case of social media, the enormity and high vari-
ance of the information that propagates through large user
communities presents an interesting opportunity for harnessing
that data into a form that allows for specific predictions
about particular outcomes, without having to institute market
mechanisms. One can also build models to aggregate the
opinions of the collective population and gain useful insights
into their behavior, while predicting future trends. Moreover,
gathering information on how people converse regarding par-
ticular products can be helpful when designing marketing and
advertising campaigns [1], [3].

This paper reports on such a study. Specifically we consider
the task of predicting box-office revenues for movies using
the chatter from Twitter, one of the fastest growing social
networks in the Internet. Twitter 1, a micro-blogging network,
has experienced a burst of popularity in recent months leading
to a huge user-base, consisting of several tens of millions of
users who actively participate in the creation and propagation
of content.

We have focused on movies in this study for two main
reasons.

• The topic of movies is of considerable interest among
the social media user community, characterized both by
large number of users discussing movies, as well as a
substantial variance in their opinions.

• The real-world outcomes can be easily observed from
box-office revenue for movies.

Our goals in this paper are as follows. First, we assess how
buzz and attention is created for different movies and how that
changes over time. Movie producers spend a lot of effort and
money in publicizing their movies, and have also embraced
the Twitter medium for this purpose. We then focus on the
mechanism of viral marketing and pre-release hype on Twitter,
and the role that attention plays in forecasting real-world box-
office performance. Our hypothesis is that movies that are well
talked about will be well-watched.

Next, we study how sentiments are created, how positive and
negative opinions propagate and how they influence people.
For a bad movie, the initial reviews might be enough to
discourage others from watching it, while on the other hand, it
is possible for interest to be generated by positive reviews and
opinions over time. For this purpose, we perform sentiment
analysis on the data, using text classifiers to distinguish
positively oriented tweets from negative.

Our chief conclusions are as follows:
• We show that social media feeds can be effective indica-

tors of real-world performance.
• We discovered that the rate at which movie tweets

are generated can be used to build a powerful model
for predicting movie box-office revenue. Moreover our
predictions are consistently better than those produced
by an information market such as the Hollywood Stock
Exchange, the gold standard in the industry [4].

1http://www.twitter.com
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 “Prediction” is not prediction! 

  Daniel Gayo-Avello: “It’s not prediction at all! I 
have not found a single paper predicting a 
future result. All of them claim that a 
prediction could have been made; i.e. they 
are post-hoc analysis and, needless to say, 
negative results are rare to find.” 
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 “Predictions” are correlations  

  Lipton: “The real goal may be to discover 
potentially causal associations that can 
guide interventions, as with smoking and 
cancer. The optimization objective for most 
supervised learning models, however, is 
simply to minimize error, a feat that might be 
achieved in a purely correlative fashion.” 
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  Prediction as minimizing error not obvious 
or inevitable 
  Milton Friedman: purpose of “positive 

economics” is “to provide a system of 
generalizations that can be used to make 
correct predictions about the consequences of 
any change in circumstances.” [emphasis added] 
  Physics: prediction is of the results of an 

experiment 
  Causal inference: causality will help predictions 

be robust 
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 Two distinct modeling goals 

  Leo Breiman: models for prediction, or models 
for information 
Galit Shmueli: prediction and (causal) 
explanation 
Sendhil Mullainathan (2014): “umbrella” 
problems and “rain dance” problems 
Sendhil Mullainathan (2017): y problems and ß 
problems 

^	^	
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 They are in competition 

Shmueli: Because of regularization, a ‘false’ 
model can predict better than a ‘true’ one 
(see also: Stein’s paradox) 

Mullainathan & Spiess: very different sets of 
variables give equivalent predictive 
performance 
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  Same predictions, different implications 
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 Definition: y only 

  Benefits of decision depend on an outcome 
variable, y 

  Decision is a function only of outcome, not 
of things that go into modeling the outcome 

  Then, can use “prediction” only: i.e., 
correlations 
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 Can using correlations alone be just? 
  Failure points: 
–  Counterfactual comparison (“better than”) 
–  Intervening on the system 
–  Intervening on covariates 
–  “Gaming the system” 
–  (Negative) feedback loops 
–  Unreliable metrics and data 
–  …probably other things 
  If we would want to challenge predictions, one clue 

that the problem is causal 
32 of 43 
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 Claimed prediction policy problems 

(i) in education, predicting which teacher will have the greatest value added 
(Rockoff et al. 2011);  

(ii) in labor market policy, predicting unemployment spell length to help 
workers decide on savings rates and job search strategies;  

(iii) in regulation, targeting health inspections (Kang et al. 2013); 

(iv) in social policy, predicting highest risk youth for targeting interventions 
(Chandler, Levitt, and List 2011); and 

(v) in the finance sector, lenders identifying the underlying credit-worthiness 
of potential borrowers.” 

  “Other illustrative examples include: 
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 (i) Teacher with greatest value added 

  “Value added” model has been critiqued 

  The metric is a proxy for underlying goal 

  Will a group of students learn better under 
this teacher? Counterfactual, so, causal 
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 (ii) Unemployment spell length 

  Purpose: “help workers decide on savings 
rates and job search strategies” 

  Job search strategies, potentially saving 
rates as well, would affect unemployment 
length spell 

  If the goal is to decrease unemployment 
spell, then is causal 
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 (iii) Targeting health inspections 

  Cited paper’s results have recently been 
refuted (Daniel Ho and Kristen Altenburger, 
The Web Conference 2019) 

  Goal is not finding violations, but 
encouraging systematic compliance 

  What targeting strategy will cause 
restaurants to comply?  
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 (iv) Highest risk youth 

  Goal: decrease risk (i.e., frequency of 
negative outcomes) 

  Will interventions be on any aspects that go 
into the model?  

  Certainly, is intervening on the system 
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 (v) Underlying creditworthiness 

  Probably the best existing example of 
injustices from prediction-only 

  Martha Poon, “Scorecards as Devices for 
Consumer Credit” 

  Josh Lauer, Creditworthy 

  Marion Fourcade and Kieran Healy, 
“Classification Situations” 
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 Best candidate: Bail decisions 

  Still ultimately fails because can be 
arrested/charged without committing a 
crime, and can commit a crime without 
being arrested/charged 

  If that weren’t the case, couldn’t game the 
system 

  Is a counterfactual comparison… 
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 Best candidate: Bail decisions 

Mullainathan and colleagues: censored data 
problem. Don’t know if a person, if released, 
would have been arrested/charged 
  Generalization error is an underlying quantity: 

cross-validated test error is a (biased) 
estimator 
  Use judge leniency as an instrumental variable to 

get unbiased estimates of prediction 
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 Best candidate: Bail decisions 

  Still ultimately fails because of data 
problems 
  But otherwise, would have worked 
  Tremendous amount of work went into 
making the argument that it is a prediction 
policy problem 
  That’s what it should take to determine if the 
use of machine learning is just 
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 Places where unjust use may be okay 

  Less unjust than the status quo 
–  E.g., no people denied bail who would have otherwise 

been released, only additional people released 
–  (But: danger of institutionalization, and unequal 

distribution of the lesser injustice) 
  Maybe unjust aspects are minor (e.g., minimal 

negative feedback loops, or small gains from 
gaming) 
  When threats are to the people in power 
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 Conclusion 

  Interpretability is the wrong conversation to be 
having for just use of machine learning. 
Causality is the real issue 
  Interpretability of a non-causal model is 

actually useless 
  “Prediction policy problems” would be cases for 

just use of non-causal models 
  Maybe no such problems actually exist 
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Abstract

The goal of ‘interpretability’ fails to grapple with the core paradox of machine learning: that we can make
effective predictions on the basis of non-causal correlations. If a machine learning model’s correlations are
interpretable but non-causal, then wewill be systematically misled if we try to use prior knowledge or intuition
about how the world works as a way of validating the model’s operation, or if we try to anticipate when the
model might break down under changing conditions of the world, or if we seek to ‘fine tune’ parts of the model
that we may interpret as effectively unjust while retaining the model’s integrity. Interpretability may be useful
for model diagnostics and debugging, but not for ensuring just usage. For just usage, our focus should instead
be on whether a situation is one in which correlations are sufficient: a ‘prediction policy problem.’ If we have
such a problem, interpretability is not necessary. Conversely, if we do not have such a case, we should not be
using machine learning at all, interpretable or not. But determining whether something is indeed a prediction
policy problem may be so difficult as to leave little space for the just use of machine learning when it comes
to human systems.

Introduction

In this paper, I endeavor to show that ‘interpretability’ is insufficient as a guide for using machine learning in
just ways. My goal is not to engage in definitional debates, as I believe my critique will apply to any definition
of interpretability that is not in terms of “capturing causality.”1

Cynthia Rudin notes that “Interpretability is a domain-specific notion, so there cannot be an all-purpose defini-
tion.”2 She cites obeying causal knowledge of a domain as one possible aspect of interpretability, but also notes
that interpretability may simply be that a model is “useful to someone”. One of her works with colleagues gives
rules derived from decision trees as a concrete example of an interpretable model:

Our goal is to build predictive models that are highly accurate, yet are highly interpretable. These
predictive models will be in the form of sparse decision lists, which consist of a series of if...then...
statements where the if statements define a partition of a set of features and the then statements
correspond to the predicted outcome of interest. Because of this form, a decision list model natu-
rally provides a reason for each prediction that it makes.

Taking the example of the dataset of passenger survival aboard the Titanic, the same example I will use further
below, they write,3

1 Can a non-interpretable model capture causality? Maybe not, insofar as causality relates to human understanding of our ability to make
and identify interventions. If we were to define interpretability in terms of causality, we might as well talk in terms of causality directly.

2 Cynthia Rudin, “Please Stop Explaining Black Box Models for High Stakes Decisions,” in The NeurIPS 2018 Workshop on Critiquing and
Correcting Trends in Machine Learning, 2018 Conference on Neural Information Processing Systems (NeurIPS 2018) (2018), https://
arxiv.org/abs/1811.10154.

3 Benjamin Letham et al., “Interpretable Classifiers Using Rules and Bayesian Analysis: Building a Better Stroke Prediction Model,” The
Annals of Applied Statistics 9, no. 3 (September 2015): 1350–1371, doi:10.1214/15-AOAS848.

1
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The goal is to predict whether the passenger survived based on his or her features. The list provides
an explanation for each prediction that is made. For example, we predict that a passenger is less
likely to survive than not because he or she was in the 3rd class.

The causality of this ‘because’ statement relates to themodel and not to the underlying system, which illustrates
the confusion I think arises with interpretability. That is, I believe this statement should be read as “being in 3rd
class is the cause of our model predicting a passenger as less likely to survive” (the model “providing a reason
for each prediction that it makes”) but the statement seems to be saying, “being in 3rd class caused passengers
to be less likely to survive” (which would be the world, or our knowledge of it, providing a reason). The second
statement is likely true, and indeed both empirical evidence from the data as well as contextual historical infor-
mation supports making such an argument. But as a general principle, decision trees or rules are constructed
from correlations between features/variables and an outcome, correlations whichmay be causal—but alsomay
not be.

Work discussing the difficulties of choosing meaningful definitions and standards for interpretability4 do raise
the problem of confusing interpretability and causality. I go further, and propose that when model is “inter-
pretable,” we end up conflating the logic of our interpretation (causal relationships in the world) with the logic
of the model (optimal correlations). This makes interpretability a dangerous distraction. Instead, we have to
ask when optimal correlations are sufficient for a problem at hand. In public policy, Jon Kleinberg, Sendhil Mul-
lainathan, and colleagues call these “prediction policy problems.”

Insofar as such prediction policy problems exist, and insofar as machine learning is more effective for these
problems, what is required for the just use of machine learning is to identify problems as prediction policy ones.
For those, we should use input/output testing in real-world settings to establish reliability, and not worry about
interpretability. Interpretability may still be useful for model diagnosis and debugging, but not for ensuring just
usage.

Historical background

In his famous 2001 paper, Leo Breiman argued that the commitment of statisticians to modeling for gaining in-
formation about modeled systems “has led to irrelevant theory, questionable conclusions, and has kept statis-
ticians from working on a large range of interesting current problems.”.5 There are applied problems, Breiman
argued, in which it is sufficient to have models that can reliably anticipate/match the outputs of a system from
given inputs, without needing to know how those inputs are connected to the outputs. He describes his expo-
sure to and examples of such problems:

“After a seven-year stint as an academic probabilist, I resigned and went into full-time freelance
consulting. After thirteen years of consulting I joined the Berkeley Statistics Department in 1980
and have been there since... As a consultant I designed and helped supervise surveys for the En-
vironmental Protection Agency (EPA) and the state and federal court systems. Controlled exper-
iments were designed for the EPA, and I analyzed traffic data for the U.S. Department of Trans-
portation and the California Transportation Department.6 Most of all, I worked on a diverse set of
prediction projects. Here are some examples:

• “Predicting next-day ozone levels.

• “Using mass spectra to identify halogen-containing compounds.

• “Predicting the class of a ship from high altitude radar returns.

• “Using sonar returns to predict the class of a submarine.

• “Identity of hand-sent Morse Code.

4 Finale Doshi-Velez and Been Kim, Towards A Rigorous Science of Interpretable Machine Learning, arXiv:1702.08608, https://arxiv.
org/abs/1702.08608; Zachary C. Lipton, “The Mythos of Model Interpretability,” ACM Queue 16, no. 3 (June 2018): 31–57, doi:10.
1145/3236386.3241340.

5 Leo Breiman, “StatisticalModeling: The TwoCultures (with Comments and a Rejoinder by theAuthor),” Statistical Science 16, no. 3 (2001):
pp. 199, doi:10.1214/ss/1009213726.

6 Breiman conspicuously but understandably leaves out the extensive, classified military work he did during this period for the US De-
partment of Defense. The influence of these problems in the development of his thinking is discussed in Matthew L. Jones, “How We
Became Instrumentalists (Again): Data Positivism sinceWorldWar II,”Historical Studies in the Natural Sciences48, no. 5 (2018): 673–684,
doi:10.1525/hsns.2018.48.5.673.
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• “Toxicity of chemicals.

• “On-line [real-time] prediction of the cause of a freeway traffic breakdown.

• “Speech recognition[.]

• “The sources of delay in criminal trials in state court systems.”

Breiman argued that what he labeled as “algorithmic modeling,” as opposed to “data modeling,” provides much
more effective solutions to these problems than those of traditional statistics, and that “interesting new devel-
opments” of these models “has occurred largely outside statistics in a new community—often called machine
learning—that is mostly young computer scientists.”

More ominously, Breimanwrote that “the damaging consequence of the insistence on datamodels is that statis-
ticians have ruled themselves out of some of themost interesting and challenging statistical problems that have
arisen out of the rapidly increasing ability of computers to store and manipulate data. These problems are in-
creasingly present in many fields, both scientific and commercial, and solutions are being found by nonstatis-
ticians.” The implication: statisticians were poised to become irrelevant, replaced by machine learning, and
would had nobody to blame but themselves. This proved prophetic, validating his critique and giving it extra
sting in retrospect.

He also explicitly brings up interpretability, noting that models that are the best “predictors” are often difficult
for practitioners to make sense of. About decision trees, he says, “While trees rate an A+ on interpretability,
they are good, but not great, predictors. Give them, say, a B on prediction.”7

However, the exact meaning of “prediction” bears closer examination.

“Predictions” are post-hoc correlations

In writing about claims to predict election results with Twitter, Daniel Gayo-Avello writes,8

“It’s not prediction at all! I have not found a single paper predicting a future result. All of them claim
that a prediction could have beenmade; i.e. they are post-hoc analysis and, needless to say, negative
results are rare to find.”9

In one sense, this critique is unfair, because a “prediction” is a technical term, defined in terms of something
that minimizes a static loss function on previously observed data. A “predicted value” is synonymous with a
“fitted value,” and is not defined necessarily as saying anything about the future10—it is simply an assumption
that correlations observed in the past will be effective for anticipating the future.

This assumption is often justified and will often hold, but in another sense, this is not a natural or inevitable
way of using prediction and so Gayo-Avello’s critique is more than fair. For example, Milton Friedman’s view of
“positive economics” sees its purpose as being “to provide a system of generalizations that can be used tomake
correct predictions about the consequences of any change in circumstances [emphasis added].”11 And in statistical
mechanics, taking a textbook12 as an example, “prediction” is always spoken of in terms of predicting the out-
come of experiments; that is, manipulations/interventions, which are causal. If statistics and machine learning
were to define prediction asminimizing a loss function under changes and interventions, then correlations could
not necessarily be used for predicting “the future” (i.e., fitted values would have far greater loss than anticipated

7 The latter is contested in the above cited work by Rudin and colleagues, as they demonstrate decision rules with predictive accuracy “on
par with the current top algorithms [models] for prediction in machine learning,” but the important point here is that decision trees are
firmly an example of an interpretable model.

8 Daniel Gayo-Avello, “No, You Cannot Predict Elections with Twitter,” IEEE Internet Computing 16, no. 6 (2012): 91–94, doi:10.1109/MIC.
2012.137.

9 Italics are original in the pre-print, Daniel Gayo-Avello, ‘I Wanted to Predict Elections with Twitter and all I got was this Lousy Paper’ — A
Balanced Survey on Election Prediction using Twitter Data, arXiv:1204.6441, May 2012, http://arxiv.org/abs/1204.6441v1.

10 Hence the proliferation of seemingly self-redundant titles about “predicting the future”, e.g., Sitaram Asur and Bernardo A. Huberman,
“Predicting the Future with Social Media,” in Proceedings of the 2010 IEEE/WIC/ACM International Conference onWeb Intelligence and Intel-
ligent Agent Technology, WI-IAT ’10 (2010), 492–499, doi:10.1109/WI-IAT.2010.63.

11 Milton Friedman, Essays in Positive Economics (University of Chicago Press, 1953).
12 Robert H. Swendsen, An Introduction to Statistical Mechanics and Thermodynamics (Oxford University Press, 2012), doi:10.1093/acprof:

oso/9780199646944.001.0001.
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on out-of-sample data13). Relatedly, the long-standing literature about causal inference/discovery14 makes the
case to those “algorithmic modelers” that, even if their only interest is in prediction, their “predictions” will fail
to actually predict if something about the underlying system shifts (that is, fail to be robust).

When ‘predictions’ fail to explain

Understanding the specific way in which prediction is defined lets us see that just because a model “predicts”
well (finds a combination of features that correlate very well with the outcome) does notmean it “explains” well
in terms of capturing casual relationships, or even of capturing associations (the “pure” relationship of a variable
on the outcome even if causal directionality is unknown, rather than the estimated relationship being confused
by collinearity, unmodeled interaction effects, missingmediating/moderating variables, or other forms ofmodel
misspecification). But can using only correlations do better at capturing the variability of the outcome than
trying to ascertain causal relationships?

Galit Shmueli raises a core paradox: models that explain well may not predict well, and conversely, models
that predict well may be poor explanations (rather than Breiman’s prediction vs. information, Shmueli uses
prediction vs. [causal] “explanation”).15

In the one direction, of models attempting explanation doing a poor job at predicting, we can (as Breiman also
suggests) easily imagine the world being more complex than the forms of models we apply to it when forming
explanations (e.g., through linear or generalized linear models, through additive models perhaps with up to
two-way interactions, and through models that assume independence between observations). Under this way
of thinking, we could continue and suppose that models that “fit to the shape of the data” in ways that entail
fewer assumptions (i.e., nonparametric models, or other similarly flexible models from machine learning) will
better capture the complexity of the world. It is less clear how a model attempting explanation can do a good
job at explaining even if it fails at predicting, but consider a regressionmodel where a 1-unit rise inXp is robustly
associated with a β̂p rise in y, but that overallR2 is low (although R2 is a poor measure of model fit16).

Given the definition of prediction, clearly non-causal correlations can achieve it. But the idea that they can do
better than causal relationships remains deeply unintuitive. Shmueli provides a helpful example, drawn from
a chemical engineering journal.17 This shows that we can find the conditions under which an “underspecified
model” (a model with fewer variables than the “truth”) has lower error than if we fit the exact equation that
originally generated the data (which we can take to be the “truth”). The conditions turn out to be sensible if
pathological (that is, highly unlikely to happen in the world), and include high irreducible variance, collinearity
between variables, and some variables having small magnitudes compared to the ones with which they are
collinear. But it is an existence proof that shows, within the world of technical definitions, it is possible for a
“false” model to predict better than a “true” model!

This example relates to regularization, and involves a paradox that goes back decades in statistics.18 But we
can also think about different sets of correlations, for which econometricians Sendhil Mullainathan and Jann
Spiess provide a helpful example. They take data from the American Housing Survey, split the data into 10
parts, and apply a regularization technique that came from statisticians but frequently used inmachine learning,
the “lasso” (also known as sparse regression, or technically as “ℓ1 regularized regression”), which effectively
“selects” a subset of features that together achieve the best predictive performance. In each of the 10 subsets, a
very different set of features are selected in (fig. 1), yet the “predictive” performance (the difference between the
fitted values and the observed values) is about the same. The implication: because of collinearity, given slightly
different realizations of the same underlying process, very different models—with vastly different implications
for intervention—may perform equally well.19

13 A good example of this happening is in the “Parable of Google Flu Trends.” While phrased as overfitting, I think this is better understood
of how using correlations to make predictions can fail if something about the underlying system changes, such as flu incidences not
co-occurring with winter, or other less directly interpretable changes. David Lazer et al., “The Parable of Google Flu: Traps in Big Data
Analysis,” Science 343, no. 6176 (2014): 1203–1205, doi:10.1126/science.1248506.

14 Peter Spirtes and Kun Zhang, “Causal Discovery and Inference: Concepts and Recent Methodological Advances,” Applied Informatics 3,
no. 3 (2016): 1–28, doi:10.1186/s40535-016-0018-x.

15 Galit Shmueli, “To Explain or to Predict?,” Statistical Science 25, no. 3 (2010): 289–310, doi:10.1214/10-STS330.
16 Sanford Weisberg, Applied Linear Regression, 3rd ed. (Wiley, 2005), pp. 81–84.
17 ShaohuaWu, T. J. Harris, and K. B.McAuley, “TheUse of Simplified orMisspecifiedModels: Linear Case,” The Canadian Journal of Chemical

Engineering 85, no. 4 (2007): 386–398, doi:10.1002/cjce.5450850401.
18 Bradley Efron and Carl Morris, “Stein’s Paradox in Statistics,” Scientific American 236, no. 5 (1977): 119–127, doi:10.1038/scientifica
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Figure 1: Features selected in across different subsets of the American Housing Survey. Figure reproduced
from code from the supplementary materials of Sendhil Mullainathan and Jann Spiess, “Machine Learning: An
Applied Econometric Approach,” Journal of Economic Perspectives 31, no. 2 (2017): 87–106, doi:10.1257/jep.
31.2.87.

Prediction vs. causation, and beyond

Mullainathan and colleagues pick up on some of the same themes as Breiman and Shmueli, although without
citing either. In a 2015 paper20 they argue almost identically to Breiman that there is a class of problems, which
they formalize as “prediction policy problems”, that are common and important, that have been neglected in
empirical policy research, andwhichmachine learning solvesmuchmore effectively than “traditional regression
approaches.” Here, they use the fanciful but unfortunately primitivist language of “rain dance problems,” where
we need to know if a particular intervention will result in the desired outcome, versus “umbrella problems,”
where we only need to know about the future state of the world in making our decisions.

In a later paper,21 there is better language of “ŷ problems” and “β̂ problems,” referring to the parts of a regression
equation ŷ = β̂x, which is an estimate of the (hypothesized underlying relationship) y = βx+ε. Here again they
recognize a trade-off; with machine learning we can get ŷ (“predicted value” or “fitted value”) that are closer to
the actual values y, while not having β̂ close to the actual β (which is hopefully causal, and for which a causal
interpretation is the goal of econometrics, but may also suffice as estimate a “pure relationship” as discussed
above). In contrast, if we focus on getting β̂ as close to β as possible, we may sacrifice how close our ŷ is to
y. Umbrella problems, or ŷ problems, are prediction policy problems: where we can apply whatever models give
the best correlations, and don’t care about if or how those correlations connect to underlying causal processes.
Given the confusing nature of the technical sense of “prediction,” these would be better (if less alliteratively)
called correlation policy problems, although I will stay with the published term.

A persistent problem will be how to identify problems as prediction policy ones; they may be far less common
than the mass deployment of machine learning would suggest in cases of decision-making about outcomes
related to people. And, contrary to Kleinberg et al., there are perhaps insurmountable difficulties in identifying
them. Alternatively, we might say that there are real cases of prediction policy problems, but the pendulum
has swung too far in the direction of treating everything as a prediction policy problem, and what is needed is a
return to the prevalence of the kind modeling on which Breiman critiqued the reliance of statisticians or, in fact,
a turn to qualitativemodeling.

While the framework of causality is effective at explaining how machine learning can fail, and what its limits
are, it too is a limited frame of the world. Notably, taking Andrew Abbott’s critique of the entire way in which
statistical modeling sets up the world,22 anything that requires things to be distinguished but associated with

merican0577-119.
19 Note that “stability selection” tries to select a set of variables that are important across multiple subsets of data, as a way to try and
get robustness. However, such a “stable set” of variables may not exist to select. Nicolai Meinshausen and Peter Bühlmann, “Stability
Selection,” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, no. 4 (2010): 417–473, doi:10.1111/j.1467-
9868.2010.00740.x.

20 Jon Kleinberg et al., “Prediction Policy Problems,” American Economic Review 105, no. 5 (2015): 491–95, doi:10.1257/aer.p20151023.
21 Sendhil Mullainathan and Jann Spiess, “Machine Learning: An Applied Econometric Approach,” Journal of Economic Perspectives 31, no. 2
(2017): 87–106, doi:10.1257/jep.31.2.87.

22Andrew Abbott, “Transcending General Linear Reality,” Sociological Theory 6, no. 2 (1988): 169–186, doi:10.2307/202114.
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each other as units of a population with fixed and independent attributes, and that relies on a central tendency
to characterize the population,23 is a limited view of the world and one that excludes and is used to invali-
date other ways of knowing, such as lived experience.24 More directly, how might we fit structural racism into
the language of certain variables causing others? Eugene Richardson is developing a critique about how such
diffuse, long-range effects are difficult to fit into a quantitative framework, leading to them being ignored.25

Even before questions of causality or correlations, or whether we put in effort to quantify the uncertainty of
out models26 instead of ignoring it as machine learning usually does, we should consider the consequences
of standardization, bureaucratization, formalization, quantification, datafication, and mass systems overall and
possible alternatives—such as qualitative analysis, participatory action research that recognizes people (rather
than quantitative measures) as the experts of their own experience, or prison abolition that rejects calls for
greater efficiency and/or justice in carceral systems and instead recognizes those systems themselves as in-
herently unjust and deserving of dissolution in favor of alternatives.

Interpreting the wrong thing: A decision tree on the Titanic data

I now turn to my central example, presenting what is unquestionably an ‘interpretable’ model, a decision tree,
going through some of what interpreting it might mean and how those interpretations are insufficient for vali-
dation, anticipating breakdowns, or fine-tuning. Using the same data as used by Rudin and colleagues, survival
aboard the Titanic, with the same training/test split in the data as used in the Datacamp tutorial using these
data.

I construct a decision tree in the R package rpartwith default parameters (fig. 2).27 From seeing the variables
that the tree splits upon, and at what values and in what order, give an overall sense of what the model is
finding important in the system (we can also quantify this through “feature importance,” but that is one level
of interpretation removed from the way the model will run, and is not necessary for a single, relatively shallow
tree, unlike a forest of shallow trees or a single tree with hundreds of branchings). We could also convert this
to a set of rules in terms of if/then statements, but I will stay with the tree representation.

Face validity. Consider the split on fare at node 6. According to this, having a higher fare makes female third-
class passengers more likely to perish. This holds on the test data as well: among 3rd class female passengers
with fares below23.35, 13 perished and 16 survived. Among 3rd class female passengerswith fares above 23.35,
12 perished and 9 survived.

The tree has uncovered a counterintuitive pattern, but one that is robust (at least across this training/test
division—which does not say anything about whether this might generalize to disasters in general, or only boat
disasters, or only boat disasters in the 19th century, or only boat disasters in the 19th century with primarily
western passengers, etc.). Of course, outside of this subset of data (female, 3rd-class passengers), having
a lower fare correlates strongly with perishing, but much of this effect is “soaked up” by splitting passengers
by class (which itself correlates strongly with fare, i.e. is strongly collinear). The tree does not reveal these
collinearities, so any reasoning we do about this split making sense after all is speculation, or is drawing on
additional analysis.

Anticipating breakdowns. Aswe sawabove, a counterintuitive pattern held not only in training data but in test
data as well. Then, a split that violates intuition may nevertheless be robust. Can a split that violates intuition
fail to be robust? And, can a split that agrees with intuition fail to be robust? To look for possible examples, we
can see how the test data percolates through the same decision tree (fig. 3). Node 5 gives us an example of an
intuitive pattern that fails to hold in the test data: more males younger than 6.5 died than lived. It also gives us

23 Todd Rose, The End of Average: HowWe Succeed in a World that Values Sameness (New York: HarperCollins Publishers, 2015).
24Candice Lanius, Fact Check: Your Demand for Statistical Proof is Racist, Cyborgology [blog], January 2015, https://thesocietypages.

org/cyborgology/2015/01/12/fact-check-your-demand-for-statistical-proof-is-racist/.
25 Eugene Richardson, forthcoming, “Not-so-big Data and Ebola Virus Disease.”
26D. R. Cox, “Role of Models in Statistical Analysis,” Statistical Science 5, no. 2 (1990): 169–174, doi:10.1214/ss/1177012165.
27 The default parameters for other decision tree-fitting packages, namely tree and party, produce different trees. I originally developed
my critique around the result of the default parameters for tree, which make the argument more easily, but I decided to switch to the
“standard” package for decision trees. Decision trees are unstable (i.e., slightly different subsets of data, and different tuning parameters,
often result in very different trees although with similar performance), so a given tree might not have these objectionable qualities, but
many trees will have something that contradicts intuition or domain knowledge.
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male

≥ 6.5 3rd

≥ 23.35

< 14.87

female

 < 6.5 1st,2nd

 < 23.35

 < 16.5

 < 7.888

≥ 16.5

≥ 7.888

≥ 14.87≥ 14.87

Lived: 342   Died: 549 
 Accuracy: 0.62   Weight: 1.00 

Split on: Sex

Lived: 109   Died: 468 
 Accuracy: 0.81   Weight: 0.65 

Split on: Age

Lived: 93   Died: 460 
 Accuracy: 0.83   Weight: 0.62 

Prediction: Died

Lived: 16   Died: 8 
 Accuracy: 0.67   Weight: 0.03 

Prediction: Lived

Lived: 3   Died: 24 
 Accuracy: 0.89   Weight: 0.03 

Prediction: Died

1

2

4 5

Lived: 233   Died: 81 
 Accuracy: 0.74   Weight: 0.35 

Split on: Pclass

3

Lived: 72   Died: 72 
 Accuracy: 0.50   Weight: 0.16 

Split on: Fare

6

12
Lived: 69   Died: 48 

 Accuracy: 0.59   Weight: 0.13 
Split on: Age

13

Lived: 49   Died: 42 
 Accuracy: 0.54   Weight: 0.10 

Split on: Fare

26

Lived: 23   Died: 31 
 Accuracy: 0.57   Weight: 0.06 

Split on: Fare

52

Lived: 10   Died: 23 
 Accuracy: 0.70   Weight: 0.04 

Prediction: Died

104
Lived: 13   Died: 8 

 Accuracy: 0.62   Weight: 0.02 
Prediction: Lived

105

Lived: 26   Died: 11 
 Accuracy: 0.70   Weight: 0.04 

Prediction: Lived

53

Lived: 20   Died: 6 
 Accuracy: 0.77   Weight: 0.03 

Prediction: Lived

27

Lived: 161   Died: 9 
 Accuracy: 0.95   Weight: 0.19 

Prediction: Lived

7

Figure 2: A decision tree for classifying survival aboard the Titanic based on age, sex, passenger class, and fare,
fitted with the R library rpart under default parameters. Each node is numbered, above. Within each node is
number of observations in each class (lived/died), the accuracy in that node if we were to predict the majority
class, and the weight out of the overall dataset present in that node (i.e., the fraction of the total observations
in the dataset, such that the weighted accuracy of the terminal nodes is the overall accuracy), and the variable
on which the observations are split. If a terminal node, the final prediction is given (note that the “predictions”
are in past tense, as they are about something that already happened). The edges give the values of the split
variable at which the split happens.

an example of a split that violates intuition not holding: node 53 (split on the fare being less than 7.888) predicts
that the passenger lived, but the majority of test observations falling into this node died. Here, intuition would
indeed guide us in the right direction (although only by improving accuracy for 7% of the test data from 45%
to 55%).

Fine-tuning. If the logic of our interpretationswas a validway to understandmodels, thenwe should be able to
‘fine-tune’ decision trees using our domain knowledge. A specific example of a place where we might do this is
around age. An econometrics paper, published in several venues,modeled this samedataset not in terms of best
“predicting” survival, but of studying social norms (such as “womenand children first,”28 or “noblesse oblige”29).
Meredith Broussard’s discussion of the Titanic dataset also notes this norm being present as early as 1852,30

and that the Titanic captain explicitly made an order to put women and children in lifeboats when evacuating
the ship.31 Particularly for studying the question of women and children first, the econometrics work needed
a threshold for childhood: they decided on using the (contemporary) United Nations definition of children as
being 15 and younger.32 While we can question the accuracy of using a contemporary definition, rather than

28 Bruno S. Frey, David A. Savage, and Benno Torgler, “Behavior under Extreme Conditions: The Titanic Disaster,” Journal of Economic Per-
spectives 25, no. 1 (2011): pp. 36, doi:10.1257/jep.25.1.209.

29 Bruno S. Frey, David A. Savage, and Benno Torgler, “Noblesse Oblige? Determinants of Survival in a Life-or-Death Situation,” Journal of
Economic Behavior & Organization 74, nos. 1–2 (2010): 1–11, doi:10.1016/j.jebo.2010.02.005.

30Meredith Broussard, Artificial Unintelligence: How Computers Misunderstand the World (MIT Press, 2018), pp. 101.
31 Ibid., pp. 116.
32 Bruno S. Frey, David A. Savage, and Benno Torgler, Surviving the Titanic Disaster: Economic, Natural and Social Determinants, technical re-
port 2009-03 (CREMA Gellertstrasse 18 CH - 4052 Basel: Center for Research in Economics, Management and the Arts, 2009), pp. 13,
http://www.crema-research.ch/papers/2009-03.pdf.
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male

≥ 6.5 3rd

≥ 23.35

< 14.87

female

 < 6.5 1st,2nd

 < 23.35

 < 16.5

 < 7.888

≥ 16.5

≥ 7.888

≥ 14.87≥ 14.87

Lived: 158   Died: 260 
 Accuracy: 0.62   Weight: 1.00 

Split on: Sex

Lived: 52   Died: 214 
 Accuracy: 0.80   Weight: 0.64 

Split on: Age

Lived: 90   Died: 168 
 Accuracy: 0.65   Weight: 0.61 

Prediction: Died

Lived: 3   Died: 5 
 Accuracy: 0.38   Weight: 0.02 

Prediction: Lived

Lived: 0   Died: 6 
 Accuracy: 1.00   Weight: 0.01 

Prediction: Died

1

2

4 5

Lived: 106   Died: 46 
 Accuracy: 0.70   Weight: 0.36 

Split on: Pclass

3

Lived: 34   Died: 38 
 Accuracy: 0.53   Weight: 0.17 

Split on: Fare

6

12
Lived: 34   Died: 32 

 Accuracy: 0.52   Weight: 0.16 
Split on: Age

13

Lived: 29   Died: 29 
 Accuracy: 0.50   Weight: 0.14 

Split on: Fare

26

Lived: 16   Died: 13 
 Accuracy: 0.55   Weight: 0.07 

Split on: Fare

52

Lived: 8   Died: 10 
 Accuracy: 0.56   Weight: 0.04 

Prediction: Died

104
Lived: 8   Died: 3 

 Accuracy: 0.73   Weight: 0.03 
Prediction: Lived

105

Lived: 13   Died: 16 
 Accuracy: 0.45   Weight: 0.07 

Prediction: Lived

53

Lived: 5   Died: 3 
 Accuracy: 0.62   Weight: 0.02 

Prediction: Lived

27

Lived: 72   Died: 8 
 Accuracy: 0.90   Weight: 0.19 

Prediction: Lived

7

Figure 3: The breakdown of how the test data goes through the fitted decision tree. I manually traced the test
data through the fitted decision tree, and manually changed the text of the decision tree to reflect this tracing.

historically investigating what the category of ‘children’ might have meant at that time, it is reasonable to have
an a priori definition for the modeling rather than one discovered from data, as that would be tautological (using
survival rates as a proxy for defining children, then using the label of a child to predict survival) or, in statistical
terms, re-using data which harms generalizability.33

For the sake of argument, then, let’s say we took the definition of ‘children’ as being 15 and younger. If we
combined this with the domain knowledge of “women and children first,” we would get the suggestion that the
various splits on age should be at <16 and ≥16. One of the splits, at node 13, is near this; however, it includes
16-year-olds, and furthermore, the split on age at node 2 is at 6.5. What would be the effect if we used domain
knowledge to dispute the value of the splits, and suggest fine-tuning to improve the tree?

This, too, degrades the empirical effectiveness of the tree. Splitting at node 2 at age 16 and above results in the
left leaf node having 88 who lived and 449 who died, for an accuracy of 0.84 on 0.60 of the data. The right
leaf node now has 21 who lived and 19 who died, for an accuracy of 0.52 on 0.04 of the data. The weighted
accuracy of the “male” branch of the decision tree is then 0.84×0.60 + 0.52×0.04 = 0.52, versus the original
tree, 0.83×0.62 + 0.67×0.03 = 0.53. After all, if splitting at age 16 were more empirically effective, the tree
would have selected this. On the test data, the original test accuracy for the “male” branch is 0.81×0.62 +
0.62×0.02 = .5146, versus the revised branching having accuracy 0.82×0.59 + 0.58×0.05 = .5128. This is
even less of a difference than on the training data (indeed, I had to include more significant figures), and may
not be “significant” if wewere to do a statistical test of the difference in accuracy (e.g., with a bootstrap), but it is
a difference nonetheless in the same direction. The current state of published, quantitative domain knowledge,
applied to this tree, would hurt predictive performance.

33 Bradley Efron et al., “The Estimation of Prediction Error: Covariance Penalties and Cross-Validation [with Comments, Rejoinder],” Journal
of the American Statistical Association 99, no. 467 (2004): 619–642, doi:10.1198/016214504000000692.
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Interpreting the wrong thing in general

I have gone through hypothetical ways in which interpretation could go awry, but in Breiman’s article itself, I
would argue that there is a real-world example:

“A project I worked on in the late 1970s was the analysis of delay in criminal cases in state court
systems... The dependent variable for each criminal case was the time from arraignment to the
time of sentencing. All of the other information in the trial history were the predictor variables. A
large decision tree was grown, and I showed it on an overhead and explained it to the assembled
Colorado judges. One of the splits was on District N which had a larger delay time than the other
districts. I refrained from commenting on this. But as I walked out I heard one judge say to another,
‘I knew those guys in District N were dragging their feet.”’

I would say that this, and this overall project (the sources of delay), is an explanation/β̂ problemwrongly treated
as a predictive/ŷ one. Was District N actually dragging its feet, i.e. were faster criminal trials within their ability
but simply not done? To properly answer this question would be to provide an estimate of the effect of being in
District N, after controlling for other factors. But a decision tree might use an indicator for being in District N
as a proxy for the actual causal factors. The judge interpreting the decision tree, thus, arrived at an unjustified
conclusion. That is, maybe the conclusion was actually accurate, but using the decision tree was not a valid way
to make that determination. It is hard to read Breiman’s stance on this anecdote: he notes that he was careful
not to comment, but it is unclear what he is saying about the judge’s interpretation. The next statement is about
decision trees rating A+ on interpretability but a B on prediction, which I could be suggesting that a model that
predicted better could have been interpreted causally, or perhaps that a model that predicted better but was
less interpretable would not be subject to such erroneous interpretations.

This is an explicit example of misinterpretation by policymakers, but multiple other authors allude to the diffi-
culty of client audiences confusing interpretability and causality. Doshi-Velez and Kim write, “one can provide
a feasible explanation that fails to correspond to a causal structure, exposing a potential concern.” In a famous
example of asthma being robustly associated with a lessened risk of dying from pneumonia (a spurious corre-
lation, with the underlying cause that asthmatic patients received more attention), Rich Caruana et al. write,
“Because themodels in this paper are intelligible, it is tempting to interpret them causally. Although themodels
accurately explain the predictions they make, they are still based on correlation.”34 Then, in an early version of
“The Mythos of Model Interpretability”, Zachary Lipton writes, “Another problem is that such an interpretation
might explain the behavior of the model but not give deep insight into the causal associations in the underlying
data. That’s because linear models are subject to covariate effects through the process of feature selection.
This can be problematic if you expect to understand anything about the underlying reality simply by a model’s
weights.”.35 In a 2018 update, the equivalent statement reads,

“While the discussed desiderata, or objectives of interpretability, are diverse, they typically speak
to situations where standard ML problem formulations, e.g. maximizing accuracy on a set of hold-
out data for which the training data is perfectly representative, are imperfectly matched to the
complex real-life tasks they are meant to solve. Consider medical research with longitudinal data.
The real goalmay be to discover potentially causal associations that can guide interventions, aswith
smoking and cancer. The optimization objective for most supervised learning models, however, is
simply to minimize error, a feat that might be achieved in a purely correlative fashion.”36

Are there really prediction policy problems?

The just use of machine learning, then, relies on the question of whether there actually are prediction policy
problems, entirely apart from questions of interpretability. I would argue that such problems are frequently
present around physical systems; Breiman’s example of detecting chemicals on the water is an excellent one.

34Rich Caruana et al., “Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15 (2015), 1721–1730, doi:10.1145/
2783258.2788613.

35 Zachary C. Lipton, “The Myth of Model Interpretability,” KDnuggets 15, no. 13 (April 2015), https://www.kdnuggets.com/2015/04/
model-interpretability-neural-networks-deep-learning.html.

36 Lipton, “The Mythos of Model Interpretability.”
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If we can design a model that uses correlations between the numbers of a cheap and/or fast test as a proxy for
a more expensive and/or slower test that more directly measures the chemical, it is indeed a prediction[-only]
problem.

On the other hand, if the ‘water’ in question were blood inside the human body, and the chemical was the
presence of a steroid, then it would not be a prediction policy problem because the humans could react to the
proxy, e.g. by finding chemicals that could trick the proxy (or even trick a gold standard test).37

The possibility of systems being gamed is ever-present in human systems. For example, a major argument
against making public the methodology behind credit scoring is that it would make it easy to game the system.
The “quantitative fallacy” or “McNamara fallacy” also relates to gaming systems; this is named after RobertMc-
Namara’s extreme reliance on unverified counts of enemy deaths as a measure of success during the Vietnam
War, and the incentives created for those relaying the numbers to lie to him. The possibility of gaming, along
with intervening on a covariate that influences predicted outcomes, are ways in which problems are causal and
not prediction policy ones.

I have already argued that the example of delays in court cases provided by Breiman is not a prediction policy
problem, based on the actual goal being finding the causal sources of delays. Consider, then, the four examples
given by Kleinberg et al. of prediction policy problems:

“Other illustrative examples include: (i) in education, predicting which teacher will have the great-
est value added (Rockoff et al. 2011); (ii) in labor market policy, predicting unemployment spell
length to help workers decide on savings rates and job search strategies; (iii) in regulation, tar-
geting health inspections (Kang et al. 2013); (iv) in social policy, predicting highest risk youth for
targeting interventions (Chandler, Levitt, and List 2011); and (v) in the finance sector, lenders iden-
tifying the underlying credit-worthiness of potential borrowers.”

I would argue that none of these are prediction policy problems.

(i) The phrasing of value-added (critiques of the value-added model38 aside) obscures that it is only a proxy
for the real underlying goal: if a particular teacher will cause a student or a group of students to, on the
whole, learn better.

(ii) Saving rates and job search strategies will influence unemployment spell length. Indeed, the goal of de-
creasing unemployment spell length is a causal one.

(iii) First note that the cited paper is subject of a recent critique and re-analysis of the data,39 suggesting
that the results were not accurate and that online reviews are not sufficient for predicting health viola-
tions. Second, note that there is a game-theoretic aspect to inspections: the goal of health inspections is
not to catch violators, but to have establishments have high health standards, for which inspections and
penalties are a tool. It is likely that only a fraction of violators will ever be caught, but if enough estab-
lishments calculate that the costs of penalties, combined with the chance of being caught, is too high to
risk committing violations, then the overall goal is achieved.40 But assuming that online reviews were a
valid data source, and predicting violations a valid objective, there would still be the problem of relying
on a proxy that could be gamed. In this case, confusing the signal by leaving fake reviews on competitors’
pages, and drowning out negative reviews on an establishment’s own page, would push the signal into
the cat-and-mouse game of detecting fake reviews.

(iv) Interventions will affect the variables that go into the model. And, the purpose is ultimately to reduce the
frequency of adverse outcomes, for which we want to know not who has the highest risk, but the highest
risk that an intervention will lower.

(v) The underlying creditworthiness of potential borrowers is a causal question. The use of proxies, and the
predictive modeling for determining credit scores that are acted on as proxies for creditworthiness are a

37 And insofar as any systems with which humans interact are never purely natural ones, as in the case of water contamination that might
be caused by industrial waste disposal, natural resource extraction, or infrastructural resource deprivation.

38Cathy O’Neil,Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (New York, NY: Crown, 2016).
39Daniel E. Ho and KristenM. Altenburger, “Is Yelp Actually Cleaning Up the Restaurant Industry? A Re-Analysis on the Relative Usefulness
of Consumer Reviews,” in Proceedings of the 2019Web Conference (2019).

40This insight is due to Rayid Ghani.
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major source of injustice in the world today.41 This is perhaps the best example of a causal question, treated
as a prediction policy problem, leading to injustice.

Kleinberg et al. also refer to then-unpublishedwork of theirs, subsequently published in 2017,42 arguing that bail
decisions are a prediction policy problem. Quite a bit of machinery is used inmaking this argument: specifically,
I see the paper as cleverly using judge leniency as an instrumental variable to try and get an unbiased estimate
of the generalization error from the machine learning models—after all, test error is an estimator that can be
biased by data missing not at random (in this case, the counterfactuals are the missing data), and hence causal
estimation techniques can be used to try to get unbiased estimates. There is a certain irony in using causal
estimation of one quantity in an argument that causal estimation of another is unnecessary, but I think that
deciding if something is a prediction policy problem deserves just as much care as goes into causal estimation
and so this approach should be more widely adopted.

This is perhaps the most solid theoretical case for something being a prediction policy problem. In theory,
the system cannot be gamed: after all, if gaming the system equates to not getting arrested or charged, then
the underlying goal is met... assuming arrests and charges are fair in practice. But therein lies the rub. The
connection between crime and getting arrested and/or getting charged depends on whether the accused are
members of overpoliced populations or underpoliced populations. The discrepancy between actual crime (not
even going into how acts are constructed as crime) and heavy biases in available proxies, either arrest data or
crime report data, is a perennial problem of criminology and certainly of anything predictive.43

There is also the problem that finding good instrumental variables is a matter of cleverness and luck,44 and so
the ability to rigorously establish a problem as a prediction policy one might, in general, be unavailable.

Conclusion

I have tried to focus on the issue of model interpretability, and not of bias in data. But, as shown in the final
example, the role of data in just usage might outweigh all other factors, and so perhaps should remain the
primary consideration. Furthermore, while focused on the specific topic of interpretability, I sought to open up
the focus to what I believe is the core issue: that of the possibility of prediction policy problems. Insofar as
interpretability is not causality, the logic of our interpretation does not correspond with the logic of modeling,
failing to give us insight into why, when, and how amodel works or doesn’t work and what wemight do about it.
The logic of modeling, wherein a model can “predict” well without reflecting causal processes (with prediction
defined in a particular way), is something we have to contend with through the question of prediction policy
problems.

I do want to acknowledge that it is quite easy to use machine learning in just ways in pubic policy, so long as
those uses relate to physical systems that affect people rather than people’s behavior, like Breiman’s example
of water contamination. I draw on several examples from the Data Science for Social Good program, in which
I was a 2017 fellow. In some cases, potential feedback loops might be so large, and second-order effects from
gaming the system so distant, that machine learning would be justified in practice if not in theory. For example,
water main breaks45 are not just a function of nature, but of decisions that go into the built environment and
urban infrastructure. But, unless machine learning were deployed on a large scale in ways that those who have
control over infrastructure might try to game, it is unlikely that causal factors would be a critical consideration.
Similarly, the decisions that went into using lead paint are in the past, and so only the cleanup of lead paint is
an active system today. Again, which houses’ lead paint is ignored depends on structural racism and economic
41 Martha Poon, “Scorecards as Devices for Consumer Credit: The Case of Fair, Isaac & Company Incorporated,” The Sociological Review
55, no. 2 supplement (2007): 284–306, doi:10.1111/j.1467-954X.2007.00740.x; Josh Lauer, Creditworthy: A History of Consumer
Surveillance and Financial Identity in America (New York: Columbia University Press, 2017); Marion Fourcade and Kieran Healy, “Classifi-
cation Situations: Life-Chances in the Neoliberal Era,” Accounting, Organizations and Society 38, no. 8 (2013): 559–572, doi:10.1016/j.
aos.2013.11.002.

42 Jon Kleinberg et al., “Human Decisions and Machine Predictions,” The Quarterly Journal of Economics 133, no. 1 (August 2017): 237–293,
doi:10.1093/qje/qjx032.

43Kristian Lum and Patrick Ball, Estimating Undocumented Homicides with Two Lists and List Dependence, technical report (Human Rights Data
Analysis Group, 2015), https://hrdag.org/publications/estimating-undocumented-homicides-with-two-lists-and-
list-dependence/; Kristian Lum andWilliam Isaac, “To predict and serve?,” Significance 13, no. 5 (2016): 14–19, doi:10.1111/j.1740-
9713.2016.00960.x.

44Andrew Gelman, “A Statistician’s Perspective onMostly Harmless Econometrics: An Empiricist’s Companion, by Joshua D. Angrist and Jörn-
Steffen Pischke,” Stata Journal 9 (2 2009): 315–320, http://www.stata-journal.com/article.html?article=gn0046.

45Avishek Kumar et al., “Using Machine Learning to Assess the Risk of and Prevent Water Main Breaks,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’18 (2018), 472–480, doi:10.1145/3219819.3219835.
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disparities, but machine learning may be appropriate for short-term action.46 Then, treating a causal question
as a prediction policy problems in ways that apply any potential injustices to those in positions of power, such
as predicting police misconduct and “adverse interactions,”47 or mapping out resource distribution within US
congressional actions,48 is far less worrisome.

If we determine that we have a prediction policy problem and that the use of machine learning is therefore just,
interpretability may still be an important rhetorical tool for convincing people to adopt the tool. However, I fear
this does a disservice to domain practitioners deciding whether or not to use a predictive model; the case for
using the model should be made on the basis of the existence and nature of prediction policy problems, of the
current case being one, of the data being acceptable, and of due diligence being done in careful input/output
robustness checks for edge cases and unit tests for implementation correctness. The case should not be made
on the basis of what I have demonstrated is ultimately an auxiliary concern, interpretability.
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