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# » Key points
Theory:

> RFID and Bluetooth sensors measure proximity,
which can be a proxy for the construct of interaction

> But proximity is also important as a construct

Practice:

> Compare sensors to other data (e.g., survey data)

> Reduce sensor data by “feature extraction” and
variable selection, done with careful cross-validation

2 0f32 Slides: https://MominMalik.com/cssi.pdf



>«

e > Sensors + social network studies
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e > Relational sensor data
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=M > Inconsistent terminology, confusion

> Copenhagen Networks > SocioPatterns papers
Study (Bluetooth): (RFID):

- "Proximity data"! - ;Person—to—person interaction”

- "Face-to-face interactions” 2

y L . - "Face-to-face contacts””’
— "“Close proximity interactions” 3

- "“Close-range interactions” 8
- "Face-to-face contacts” 4

“Physical contacts”® - "Face-to-face interactions” ®

- "Face-to-face proximity” 10

> Audio:

- "“Face-to-face conversation” "
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¥ Back to basics: Constructs.

> Constructs: primitives of social science

- A measurement might be a proxy for an non-
observable construct (e.g., multiple choice questions
and intelligence)

- Proxies always give errors (binary construct: false
negatives and false positives)

— (Criterion-related [“predictive”] validity)

> Face-to-face interaction: neither the measure
nor the construct
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¥ Constructs vs.
measurement

¥ In-person interaction is the true construct

Face-to-face proxinﬁt" )

Theorizing sensors for social network research
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¥ Constructs have their own importance

> What construct do we care about?

> Depends on what we want to study/investigate.

- Disease transmission? Directional proximity and/or
physical contact.

— Persuasion? Conversation.
- Mimicry? Interaction.

- Latent homophily, expressed geographically?
Proximity.

- Environmental exposure? Proximity.
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» Survey data has its own importance

> "Objective” sensor data is not superior to survey data

- Yes, informant inaccuracy, social desirability bias, ambiguous
questions...

> But they are measuring different things

- Surveys better measure the psychological perceptions that may
ultimately be causal for behavior! (e.g., memorability?)

> So, discrepancies must not be resolved in favor of the
“objective” data

> Discrepancies are exactly the interesting thing to study!!

> Propinquity is an example (discrepancy is “close
strangers, distant friends"3)
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¥ Constructs vs.
measurement

ate
cohort

Ethics

¥ Proximity is itself interesting (propinquity!)

THE BOX CRAFT Co.

Fic. 9a.  Pattern of Sociometric Connections in Tolman Court

Leon Festinger, Kurt W. Back, and Stanley Schachter (1950). Social pressure in informal groups: A < -
study of human factors in housing. Stanford University Press. Fic. 9b. Pattern of Sociometric Connections in Howe Court
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+4 » Key SNA move: Compare types of ties

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY
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e.g., e.g., e.g., e.g., e.g., e.g., e.g., Sex with Information
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temporal Sféﬁ?s astﬁtrgge Student of etc. el Helped Resources
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etc. etc.

Stephen P. Borgatti, Ajay Mehra, Daniel J. Brass, and Giuseppe Labianca (2009). Network analysis in the social sciences. Science 323, 892-895. https://dx.doi.org/10.1126/science.1165821.
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e > Connect what ties represent

> P ro p i n q u ity a t h e Behavioral Interactions
relationship between a Rigdiiled

> rCnoer;sstl:lrJecrtnse\;st. ro | e re | a t i O n a n d violence, electronic messages
opportunity structures
Role Relations

Sociall d Opportunity
> (We could further ool comsmet
' R i toation sampen
e Xt e n d to b e h a V I O ra | adsi(;ilrl/t;?;dsént’ (even if n(;t uggd) ’
1 = patron/client
Interaction or
interpersonal
Interpersonal

sentiments) o Sentiments

Liking, love, hatred,
respect, trust

James A. Kitts and Eric Quintane (2017). Rethinking networks in the era of computational
social science. Oxford Handbook of Social Networks. Figure 1. Four conceptualizations of social networks

Theorizing sensors for social network research 12 of 32 Slides: https://MominMalik.com/cssi.pdf



>«

BERKMAN
KLEIN CENTER

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

Sensors +
social
networks

¥ Constructs vs.

measurement

Case:
Fraternity
cohort

Resolving
differing
resolutions

Feature
extraction for
social science

Ethics

Summary

¥ (Conversation: The best proxy?)
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M > (Audio work needs updating!)

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

> Earliest work was
pre-smartphone

> Most recent work

was not audio-only
and bulky

> Rich opportunities
to revisit

Danny Wyatt, Tanzeem Choudhury, Jeff Bilmes, and James A. Kitts (2011). “Inferring
colocation and conversation networks from privacy-sensitive audio with implications for
computational social science.” ACM Transactions on Intelligent System Technologies 2 (1), 7:1- (a) Front: MSB is on right
7:41. https://dx.doi.org/10.1145/1889681.1889688. shoulder

¥ Constructs vs.
measurement

(b) Back: PDA is in bag. (c) PDA and data collection
program.
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FOR INTERNET & SOCIETY
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» Case:
Fraternity

cohort

» Data: Surveys + mobile phone tracking

Friendships

Out of the people you indicate
having regular contact with, who do
you consider a friend?

Mike Merrill
Afsaneh Doryab

Anind Dey

<< Previous Next >>
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¥ Goal: Study propinquity

> Nothproximity as proxy for interaction, but proximity
itse

> Compare proximity (via “location”, WiFi) to
longitudinal sociometric choice

> Look at proximity at scales larger than that of
Interaction

- Small scales (proximity at <10m): underlying causal
mechanism might still be interaction.

- Large scales (proximity >20m): will capture other
mechanisms, e.g. latent homophily, common
environmental exposure, etc.
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¥ Core problem: Different resolutions

T

-

L Survey 2
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¥ Approach: First do machine learning

> R.A. Fisher (1922): “The purpose of statistics
is the reduction of data.”

> Step 1: Find out how to meaningfully
characterize the association of proximity and
friendship

> Step 2: Using this characterization, model
co-evolution

Fisher, Ronald A. (1922). “On the mathematical foundations of theoretical statistics.” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
222,309-368. https://dx.doi.org/10.1098 /rsta.1922.00009.
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e > Data processing and “feature extraction”
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NN > Aggregates can mislead. Better test of an
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FOR INTERNET & SOCIETY

&  association is its predictive performance
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We found what looked like a compelling pattern as well, but it proved ineffective for prediction when tested
with cross-validation. Why? Aggregate trends obscure between-dyad and week-to-week variance.
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¥ Test the performance via cross-validation

> Split data into “training” and “test”
> Fit model on training, evaluate on test

> Done correctly, simulates out-of-sample data,
thereby directly establishing external validity

> But dependencies (e.g. time, networks) can
complicate cross-validation

> We use multiple cross-validation schema to
control for this (details in forthcoming work)
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NN > Result: ~30% association. Can get with 2.5K
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=M > Form of network surveys: Deliberate
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Out of the people you indicate
having regular contact with, who do
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= > Surveys based on SAOM studies

Stochastic Actor-Oriented Models (SAOMs) are the only class of
models that can handle the co-evolution of network structure and
behavior (they require longitudinal data)

> Combines exponential random graph models, choice models, and
agent-based simulation... statistically, a doozy

> Increasing work on generalizing SAOMSs, with implementations

Tom A. B. Snijders, Gerhard G. van de Bunt, and Christian E. G. Steglich (2010). “Introduction to stochastic actor-based models for network dynamics.” Social Networks 32 (1), 44-60.
https://dx.doi.org/10.1016/j.socnet.2009.02.004.

Christian E. G. Steglich, Tom A. B. Snijders, and Michael Pearson (2010). “Dynamics networks and behavior: Separating selection from influence.” Sociological Methodology 40 (1), 329-393.
https://dx.doi.org/10.1111/j.1467-9531.2010.01225.x.

Christoph Stadtfeld and Zséfi Boda (2016). Introduction to SIENA - Part 1. SIENA Workshop, Sunbelt 2016.
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#% » (Aside: SAOMs as a graphical model)

> SAOMs can relate to
machine learning in
another way: probabilistic
graphical models

> So far, poor connections
between graphical models
and network models

> | am hoping this
unification will help do
inference

-1
Ai,j
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Tom A. B. Snijders, Philippa E. Pattison, Garry L. Robins, and Mark S. Handcock, 2006, “New specifications for Exponential Random Graph Models.” Sociological Methodology 36, 99-153.
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¥ Ethics

¥ Ethics: Companies as foil

> Companies are already using
digital trace data—I want to
know what they can and can't do

> Debunk what they can't do,
regulate what they can do

> My study was with a non-
vulnerable population. If it
wasn't, | would be far more
cautious

> Who is left out is important. See
Frances Cherry's (1995) critique
of Festinger et al. (1950): they
ignored women!

Frances Cherry (1995). “One man's social psychology is another woman's social history.” In
The stubborn particulars of social psychology: Essays on the research process, pp. 68-83.
London: Routledge.
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Stop complaining about the Facebook
study. It's a golden age for research

We should insist that Facebook do experiments
on the decisions it's already making for us.
Anything else would be unethical

Duncan J Watts
k el theguardian.com, Monday 7 July 2014 07.45 EDT

The editor of the journal that published the Facebook study now calls it 'an important and emerging
area of social science research that needs to be approached with sensitivity.' Photograph: Jeff Chiu /
AP
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¥ Sensors +
social
networks

¥ Constructs vs.
measurement

¥ Case:
Fraternity
cohort

¥ Resolving
different
resolutions

¥ Feature
extraction for
social science

> SAOMs
¥ Ethics

® Summary

¥ Ethics of audio collection?

F 2
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D-Michigan Facebook Founder & CEO
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» Summary: How we should use sensors

> |If using Bluetooth, RFID proxies for interaction, do more
testing against human-coded benchmarks

> But proximity (a connection of role relations and
opportunity structures) is also inherently interesting

> Compare proximity other forms of data (e.g., friendship
for propinquity/influence vs. exposure)

> Comparing sensor data and survey data, e.g. via SAOMs,
is a good framework

> Reduce/summarize rich signals through feature
extraction + selection, not naive aggregation

> Future: use conversation add in behavioral interaction?
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# » Thank you!

Theory:

> RFID and Bluetooth sensors measure proximity, which can be a proxy for the
construct of interaction

> But proximity is also important as a construct

Practice:
> Compare sensors to other data (e.g., survey data)

> Reduce sensor data by “feature extraction” and variable selection, done with
careful cross-validation

Contact: Momin Malik <momin_malik@cyber.harvard.edu>
Work with Jirgen Pfeffer, Afsaneh Doryab. Michael Merrill, and Anind K. Dey

Thanks also to Yuvraj Agarwal and Nynke Niezink.

» Summary
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