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¥ 5-point summary

Stats a

Stats/ML divides the world into fixed entities with fixed
properties; this is not natural

The central tendency is the fundamental tool of stats/ML,
and cannot consider individuality

“Predictions” are correlations, and sometimes spurious
correlations fit better than non-spurious ones

Quantifying uncertainty (stats) has the blindspot of
uncertainty in data choice, and cross-validation (ML) has
the blindspots of dependencies and uncertainty

s it right to treat people as interchangeable? What about
punishing/rewarding people based on correlations?
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¥ Goals

Stats a

For students, to clarify some things that
confused me when | first started and didn't find
explained anywhere

For future practitioners, to understand the
nature of statements in stats/ML, and to
understand resulting limitations

Reflect on what statistics and machine learning
do in the world, and if this is what we want in a
gliven case
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¥ Outline

> Statistics

- Reduction of data to central tendency
- Limitations: Individuality, meaning, and experience

- Quantifying uncertainty

> Machine learning

- "Prediction”
- Limitations: Causality, bias-variance

— Cross-validation

> Ethics
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» What is
statistics?

» What is statistics?
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“briefly, and in its most
concrete form, the object
of statistical methods is
the reduction of data.”

- R. A. Fisher, “On the
mathematical foundations of

theoretical statistics” (1922)

Stats and ML: Foundations, Limitations, Ethics 6 of 55 Slides: https://MominMalik.com/colby2019.pdf



¥ Reduction to “relevant information”

“A quantity of data, which usually by its mere bulk is
incapable of entering the mind, is to be replaced by
relatively few quantities which shall adequately
represent the whole, or... as much as possible... of the
relevant information contained in the original data.”

- R. A. Fisher, “On the mathematical foundations of theoretical
statistics” (1922)
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¥ Reduction to “relevant information”

A “statistic” (singular) is defined as a function of
the data.

The discipline of Statistics is about defining
“relevant information,” and finding functions to
capture It.

How does it do so?
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#% » Relevant info defined via probability

| understand statistics as:

The use of probability as a model for variability in
the world.™

* Technically, “Probability is used in two distinct, although interrelated, ways in statistics,
phenomenologically to describe haphazard variability arising in the real world and
epistemologically to represent uncertainty of knowledge.” David R. Cox, “Role of models
in statistical analysis” (1990). For now | focus only on the former.
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¥ Reduce data
to “relevant
information”

‘Relevant’ and 'irrelevant’ information
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“It is remarkable that a science
which began with the
consideration of games of
chance should have become the
most important object of human
knowledge.”

- Pierre-Simon Laplace, Théorie
Analytique des Probabilitiés (1812)
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» Probability as a model for variability

Makes a philosophical commitment:

> There are distinct entities in the world that, despite
being different, are similar in some way.

Corollary: we can learn about one thing by
studying other things (and eventually, make
statements about not-yet-seen entities based on

the study of seen entities).
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¥ Individuality,
meaning, and

experience

> Limitations
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e > The “flaw of averages”

¥ Individuality,
meaning, and

experience
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>«

wem > Must deal in aggregates

> Similarity/"relevant information” is in terms of some
form of central tendency.

> Necessarily ignores individuality; can only say something
if n >1 (and, rule of thumb, at least n > 30)

> lgnoring individuality is a choice, not intrinsic.

> A true "average man” (Adolphe Quetelet's 'homme
moyen, 1835), who is average in all aspects, would be
quite peculiar!

> By choosing averages, we may actually end up imposing
it on the world! (Treating people as interchangeable)

¥ Individuality,

, and

Stats and ML: Foundations, Limitations, Ethics 15 of 55 Slides: https://MominMalik.com/colby2019.pdf



» Meaning-making

“During the writing of this book, my first
grandchild was born. The hospital records
document her weight, height, health[;] the
mother's condition, length of labor, time of birth,
and hospital stay... These are physiological and
institutional metrics. When aggregated across
many babies and mothers, they provide trend
data about the beginning of life—

b|rth|ng . (Patton 2015)



» Meaning-making

"But nowhere in the hospital records will you find
anything about what the birth of Calla Quinn
means. Her existence is documented but not what
she means to our family, what decision-making
process led up to her birth, the experience and
meaning of the pregnancy, the family experience
of the birth process, and the familial, social,
cultural, political, and economic

context..." (Patton, 2015)
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meaning, and
experience

» Modeling vs. experience

/&> CYBORGOLOGY

Fact Check: Your Demand for Statistical Proof is

Racist o

Candice Lanius on January 12, 2015

Today we’re reposting our most popular guest post of the year. This essay has
garnered a lot of attention and for good reason: it speaks directly to a kind of
liberal racism that is endemic to the institutions and professions that see
themselves as the good guys in this problem. -db
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> "“A white woman can say that

a neighborhood is ‘sketchy’
and most people will smile
and nod. She felt unsafe, and
we automatically trust her
opinion. A black man can tell
the world that every day he
lives in fear of the police, and
suddenly everyone demands
statistical evidence to prove
that his life experience is real.”
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¥ Quantifying uncertainty

¥ Quantifying
uncertainty
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¥ The other part of statistics: Uncertainty

“Probability is used in two distinct, although
interrelated, ways in statistics,
phenomenologically to describe haphazard
variability arising in the real world and
epistemologically to represent uncertainty of
knowledge.”

- David R. Cox, “Role of models in statistical
analysis” (1990)
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¥ Likelihood principle: Data to probability

> A probability distribution is a function,
p(x) o< exp {n(8)' T(x)}

> Input possible value of data x, get back the probability

> If you instead have an observed values, take the same
equation, but treat it as a function of the parameter(s)

L(0) o< exp {n(0)" T(x)}

> Interpret as: what values of the parameters make the
observed values most likely? Solve for parameters
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wem > Inference: Uncertainty of an estimator

Random variable, X

Mean, E(X) = u Standard deviation, \/V(X) = o

Estimator, 1 Estimator, &
et A/A N — ~
Expected value, E(f1)  |Standard error, \/V(fi) Standard error, \/V(7)

Expected value, E(o)

The variance of the estimator of the mean gives us the uncertainty of the estimate, and
is given the special name of the standard error. If the uncertainty is small enough, we say
we have made an inference to the underlying data-generating process.
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e > Going on ad infinitum...

Random variable, X

Mean, E(X) = u Standard deviation, \/V(X) = o

Estimator, 1 Estimator, o
% Quantifying / \ \
uncertainty ~ ~ o~
Expectid,value,\I\E(,u) Stanflzird grror, V(i) Standard error, \/\V(a)
~
o e ~ ~ - ” ~ ~ { R > 7’ < ~ ~
Expected value, E(o)
”’ ~
s ~
” ~
e ~
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e > Going on ad infinitum...

¥ Quantifying

uncertainty B
-

T DON'T KNOW HOW To PROPAGATE
ERROR CORRELTLY, S0 I JUST PUT
https://xkcd.com/2110/ ERROR BARS ON ALL MY ERROR BARS.
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¥ Problems with quantifying uncertainty

> “model uncertainty is a fact of life and likely to
be more serious than other sources of
uncertainty which have received far more
attention from statistician.” (Chatfield, 1995)

> “the analyst will never know whether the
inferences are good since the estimates
cannot be compared directly with the truth.”
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» What is machine learning?

¥ What s
machine
learning?
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» What is machine learning?

> "A computer program is said to learn from
experience E with respect to some class of tasks

I and performance measure P if its
performance at tasks in T, as measured by P,

improves with experience E.”
- Tom M. Mitchell (1997)

> This definition has nothing to do with
statistics or probability!
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» “Learning” from data

“Statistics is the science of learning from data. Machine
learning (ML) is the science of learning from data. These
fields are identical in intent although they differ in their
history, conventions, emphasis and culture.”

"At first, ML researchers developed expert systems that
eschewed probability. But very quickly they adopted
advanced statistical concepts like empirical process theory
and concentration of measure. This transition happened in

a matter of a few years.”
- Larry Wasserman, “Rise of the Machines” (2014)
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» “Learning” is a metaphor

> The "learning” is a metaphor. The way in which machines
“Improve with data” has only a fleeting resemblance to
human learning.

> "A.l. systems tend to be passive vessels, dredging
through data in search of statistical correlations; humans
are active engines for discovering how things work."
- Gary Marcus, 2017, "Artificial Intelligence Is Stuck.
Here's How to Move It Forward”

> (This perspective is not universal, it gets into heated
philosophical debates and “hard"” vs. “soft"” artificial
intelligence, Turing Test vs. the “Chinese Room,” etc...)
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¥ Now, all statistical

> Surprising that statistical approaches, designed
to uncover data-generating mechanisms with
variation (and under uncertainty), could be
applied to carry out operations resembling
“intelligence”

> The original vision of Al, and ML, had to do with
modeling (and thereby reproducing) rules and
reasoning, but that failed; what worked was
using statistics
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ao > “Two cultures”

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

“There are two cultures in the use of statistical modeling to reach conclusions

¥ What s

e from data. One assumes that the data are generated by a given stochastic data

learning?

model. The other uses algorithmic models and treats the data mechanism as
unknown. The statistical community has been committed to the almost exclusive
use of data models. This commitment has led to irrelevant theory, questionable
conclusions, and has kept statisticians from working on a large range of
interesting current problems.”
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¥ What s
machine
learning?

» Statistics vs. machine learning

Statistics versus Machine Learning Statistics versus Machine Learning
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How statisticians see the world?

How machine learners see the world?

Diagrams: Robert Tibshirani, “Recent Advances in Post-Selection Inference” (2015)
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¥ What s
machine
learning?

» Statistics vs. machine learning

Statistics versus Machine Learning
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How statisticians see the world?

6

Statistics versus Machine Learning

/46

How machine learners see the world?

Diagrams: Robert Tibshirani, “Recent Advances in Post-Selection Inference” (2015)

Stats and ML: Foundations, Limitations, Ethics

33 0f 55

Slides: https://MominMalik.com/colby2019.pdf



>«

BERKMAN
KLEIN CENTER

¥ Introduction

» Whatis

statistics?
¥ Reduce data

information”

¥ What s
machine
learning?

¥ “Prediction”

¥ Ethics

¥ References

¥ Machine learning: Instrumentalist

Estimator, 1

Expxalue, E(u)

Standard

Random variable, X

Standar

JV ()

e, E(0)

Machine learning skips over the entire machinery of inference, and creates estimators that
can best recover some aspect of the data. (Statistical machine learning brings theory back in,
but for the purpose of seeing what best predicts, not what recovers information.)
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» What is “prediction”?

¥ “Prediction”
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¥ Prediction is not what you think

> “It's not prediction at all! | have not found a
single paper predicting a future result. All of
them claim that a prediction could have been
made; i.e. they are post-hoc analysis and,
needless to say, negative results are rare to
find.”

- Daniel Gayo-Avello, "l Wanted to Predict Elections with
Twitter and all | got was this Lousy Paper” (2012)
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>

>

Prediction is “fitted values”

“Predicted values” is a technical term synonymous
with “fitted values,” so in some sense Gayo-Avello is
being unfair

But defining predictions as fitted values only, and not
accounting for change/intervention, is a confusing
usage for laypeople and even for other scientists

Read “We can predict X" instead as “"We found a
model that fits well”

Fitting well is still an accomplishment, but it's quite
different from actually being able to tell the future
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> Limitations

¥ Causality

Stats and ML: Foundations, Limitations, Ethics 38 of 55 Slides: https://MominMalik.com/colby2019.pdf



¥ Correlation does not equal causation...

> And prediction does not mean explanation.

> Two issues: spurious correlations, and bias-
variance tradeoff.

> Spurious correlations: A spurious (non-
causal) correlation can be fairly robust, and
a good basis for making “predictions”

> But this can be fragile
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¥ Causality

» But correlations can be fragile

Original GFT Revised GFT

Adapted

from
Santillana et
al. (2014).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

CDC-reported ILI rate (%)

See also

_ -Lazer et al.

0 Wave iwl VWave 2| Post-H1N1 to 2012 season | 2012-2013 season (2014)'
3/29/08  8/2/09 12/27/09 9/30/12 5/1213
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wem > Ex: Chocolate and Nobel prizes

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY
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wem > Underling cause can lead to failure

A “causal graphical model":

Science

Nobel

funding

Resources

¥ Causality

Consume
chocolate
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prizes

Will past patterns continue? E.g.,
with small European countries?
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» Can't intervene based on correlations

— ————— > Probably won't win
=————— more Nobel prizes by
—=  feeding population
— more chocolate

> Very different sets of
— correlations can
== = “predict” equally well
——————————  (Mullainathan &

" hodofthesample Spiess, 2017)
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oo > Often, what we want is causality

>

Stats a

“The optimization objective for most supervised learning models... is
simply to minimize error, a feat that might be achieved in a purely
correlative fashion.” (Lipton & Steinhardt, 2018)

“Because the models in this paper are intelligible, it is tempting to
interpret them causally. Although the models accurately explain the
predictions they make, they are still based on correlation.” (Caruana et
al., 2015)

“one can provide a feasible explanation that fails to correspond to a

causal structure, exposing a potential concern.” (Doshi-Velez & Kim,
2017)

“interpretation might explain the behavior of the model but not give
deep insight into the causal associations in the underlying data... The
real goal may be to discover potentially causal associations that can
guide interventions.” (Lipton, 2015)
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¥ Bias-variance tradeoff

> Squared error loss decomposes into irreducible error
(phenomenon) + bias squared + variance (of the estimator):

EPE(x) = E[(Y — F(x))*|X = X]
= V(Y) +E[(F(x) — £(x))°1X = x] + E[(F(x) — E[F(x)])"|X = ]
— g bias2(i?(x)) + V(?(X))

> O Zistheirreducible error (the variance of Y, beyond any signal
from X)

> Bias: how far the estimator is from the true signal of X

> Variance: how noisy the estimator is (term has nothing to do
with Y1)

> Turns out: bias that decreases variance can improve prediction!
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¥ Causality

® The ‘true’' model can predict worse!
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¥ Cross-validation

¥ Cross-
validation
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# » Overfitting: fit to noise

= = True
—— Overfit e}
—— Correctly fit

> If we are no longer guided by theory, and use
automatic methods, we risk overfitting: fitting to the
the noise, not the signal (“memorize the data”)
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#% » Data splitting: Catch overfitting

= = True

o o o .
.‘:)CDOO o .Cb. A
° ° °

o
38

> ldea: if we split data into two parts, the signal should be
the same but the noise would be different

> Cross validation: Fitting the model on one part of the data,
and “testing” on the other

g > ML lives and dies by cross-validation

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989¢76
Slides: https://MominMalik.com/colby2019.pdf
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e > But cross-validation can fail

> Re-using a test set can . : e
overfit to the test set! P
Happens in Kaggle £
pp 58 § o Greg Park (2012):
> Or, if there are g Repeated tries improved

“visible test” ranking

dependencies (temporal,

1 1 I | | |
0 10 20 30 40 50 60

network, group) between Number of Submissions
data splits, it “shares” o
information LRI
> E.g., temporal: Fittingon £, — +
values that come after fu " ”
test values is “time Ewos T A
traveling”! U et 0
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=M > Dependencies affect CV, too!

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY
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¥ Ethics

> |s it fair to determine effective rewards or
punishments, e.g. insurance premiums, by
correlations?

> That's what the entire insurance industry is
based on, and with ML, it's only intensifying
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