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 Learning objectives 

  Recognize what substance there is (and isn’t) in 
machine learning claims of “prediction” 
  Understand the implications of using the central 

tendency 
  Link oppressive possibilities to uses of machine 

learning as top-down, imposed optimization 
based on surveillable proxies for intimate 
quantities 
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 Outline 

  Prediction 

  Statistics vs. machine learning 

  Correlation and proxies 

  Central tendency 

  A positive example 
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 Predict… the future? 

PERSPECTIVE

1216

Fast-Track Zika Vaccine Development

n engl j med 375;13 nejm.org September 29, 2016

Predicting the Future

Predicting the Future — Big Data, Machine Learning,  
and Clinical Medicine
Ziad Obermeyer, M.D., and Ezekiel J. Emanuel, M.D., Ph.D.  

By now, it’s almost old news: 
big data will transform med-

icine. It’s essential to remember, 
however, that data by themselves 
are useless. To be useful, data 
must be analyzed, interpreted, and 
acted on. Thus, it is algorithms — 

not data sets — that will prove 
transformative. We believe, there-
fore, that attention has to shift to 
new statistical tools from the 
field of machine learning that 
will be critical for anyone practic-
ing medicine in the 21st century.

First, it’s important to under-
stand what machine learning is 
not. Most computer-based algo-
rithms in medicine are “expert 
systems” — rule sets encoding 
knowledge on a given topic, which 
are applied to draw conclusions 

ry agencies will pay particular at-
tention to preclinical safety and 
toxicity studies and assessments 
of unexpected adverse events dur-
ing clinical trials and after licen-
sure. The case for licensure may 
be established through tradition-
al clinical efficacy trials, but de-
clining case counts or an urgent 
need for intervention may neces-
sitate a different pathway. Alter-
natives include using efficacy data 
from studies in animals combined 
with human immunogenicity data 
or bridging to an as-yet-undefined 
immune correlate of protection. 
Human challenge studies have 
been proposed in order to augment 
information from efficacy trials, 
assist in exploring immune cor-
relates of protection, or generate 
efficacy data if natural transmis-
sion substantially declines. In the 
absence of a clear understanding 
of the frequency of adverse neu-
rologic outcomes or the persis-
tence of ZIKV in biologic fluids, 
however, human ZIKV challenge 
is ethically complex.

Other flavivirus vaccines have 
been licensed, including those 
against yellow fever (live attenu-
ated), Japanese encephalitis (inac-

tivated, live chimeric, live atten-
uated), tickborne encephalitis 
(inactivated), and dengue (live chi-
meric). Some have validated surro-
gates of protection, and all are 
based on neutralizing antibody. A 
neutralizing antibody titer of 1 in 
10 is the surrogate of protection 
for the Japanese and tickborne 
encephalitis vaccines; for yellow 
fever, the titer is between 1 in 10 
and 1 in 50. Preclinical ZIKV 
studies suggest that a titer of 1 in 
10 for mice and approximately 1 in 
100 for nonhuman primates pro-
tected against ZIKV challenge.1,2 
If these figures translate to hu-
mans, developing a ZIKV vaccine 
is very feasible.

The time required to develop a 
safe, efficacious ZIKV vaccine will 
be determined by prior experience 
with the selected technology, the 
continuation of outbreaks, and the 
required scale-up of manufactur-
ing. Ultimately, developing, licens-
ing, and deploying a vaccine ca-
pable of affecting the current 
epidemic will require seamless 
coordination among developers, 
regulatory agencies, the WHO, and 
national health authorities, along 
with a robust monetary commit-

ment from governments and fund-
ing agencies.

The views expressed in this article do 
not necessarily represent those of the U.S. 
Army or the Department of Defense.

Disclosure forms provided by the au-
thors are available at NEJM.org.
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Texas Medical Branch, Galveston (A.D.T.B.). 
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Abstract—In recent years, social media has become ubiquitous
and important for social networking and content sharing. And
yet, the content that is generated from these websites remains
largely untapped. In this paper, we demonstrate how social media
content can be used to predict real-world outcomes. In particular,
we use the chatter from Twitter.com to forecast box-office
revenues for movies. We show that a simple model built from
the rate at which tweets are created about particular topics can
outperform market-based predictors. We further demonstrate
how sentiments extracted from Twitter can be further utilized to
improve the forecasting power of social media.

I. INTRODUCTION

Social media has exploded as a category of online discourse
where people create content, share it, bookmark it and network
at a prodigious rate. Examples include Facebook, MySpace,
Digg, Twitter and JISC listservs on the academic side. Because
of its ease of use, speed and reach, social media is fast
changing the public discourse in society and setting trends
and agendas in topics that range from the environment and
politics to technology and the entertainment industry.

Since social media can also be construed as a form of
collective wisdom, we decided to investigate its power at
predicting real-world outcomes. Surprisingly, we discovered
that the chatter of a community can indeed be used to make
quantitative predictions that outperform those of artificial
markets. These information markets generally involve the
trading of state-contingent securities, and if large enough and
properly designed, they are usually more accurate than other
techniques for extracting diffuse information, such as surveys
and opinions polls. Specifically, the prices in these markets
have been shown to have strong correlations with observed
outcome frequencies, and thus are good indicators of future
outcomes [4], [5].

In the case of social media, the enormity and high vari-
ance of the information that propagates through large user
communities presents an interesting opportunity for harnessing
that data into a form that allows for specific predictions
about particular outcomes, without having to institute market
mechanisms. One can also build models to aggregate the
opinions of the collective population and gain useful insights
into their behavior, while predicting future trends. Moreover,
gathering information on how people converse regarding par-
ticular products can be helpful when designing marketing and
advertising campaigns [1], [3].

This paper reports on such a study. Specifically we consider
the task of predicting box-office revenues for movies using
the chatter from Twitter, one of the fastest growing social
networks in the Internet. Twitter 1, a micro-blogging network,
has experienced a burst of popularity in recent months leading
to a huge user-base, consisting of several tens of millions of
users who actively participate in the creation and propagation
of content.

We have focused on movies in this study for two main
reasons.

• The topic of movies is of considerable interest among
the social media user community, characterized both by
large number of users discussing movies, as well as a
substantial variance in their opinions.

• The real-world outcomes can be easily observed from
box-office revenue for movies.

Our goals in this paper are as follows. First, we assess how
buzz and attention is created for different movies and how that
changes over time. Movie producers spend a lot of effort and
money in publicizing their movies, and have also embraced
the Twitter medium for this purpose. We then focus on the
mechanism of viral marketing and pre-release hype on Twitter,
and the role that attention plays in forecasting real-world box-
office performance. Our hypothesis is that movies that are well
talked about will be well-watched.

Next, we study how sentiments are created, how positive and
negative opinions propagate and how they influence people.
For a bad movie, the initial reviews might be enough to
discourage others from watching it, while on the other hand, it
is possible for interest to be generated by positive reviews and
opinions over time. For this purpose, we perform sentiment
analysis on the data, using text classifiers to distinguish
positively oriented tweets from negative.

Our chief conclusions are as follows:
• We show that social media feeds can be effective indica-

tors of real-world performance.
• We discovered that the rate at which movie tweets

are generated can be used to build a powerful model
for predicting movie box-office revenue. Moreover our
predictions are consistently better than those produced
by an information market such as the Hollywood Stock
Exchange, the gold standard in the industry [4].

1http://www.twitter.com
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 Prediction is not prediction 

  “It’s not prediction at all! I have not found a 
single paper predicting a future result. All of 
them claim that a prediction could have 
been made; i.e. they are post-hoc analysis 
and, needless to say, negative results are 
rare to find.”  

– Daniel Gayo-Avello, “I Wanted to Prediction Elections with 
Twitter and all I got was this Lousy Paper”, 2012 
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 Prediction is not prediction 

  Predictions are post-hoc correlations 

  Maybe these work as a basis for prediction, 
but maybe not 

  Is static prediction: not prediction under 
change, nor prediction under intervention. 
Not an inevitable, or even natural, usage of 
“prediction” (Rescher, 1998) 
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 Statistics vs. machine learning 
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 What is statistics? 
  “briefly, and in its most 

concrete form, the 
object of statistical 
methods is the 
reduction of data.”  
–  R. A. Fisher, “On the 

Mathematical Foundations 
of Theoretical 
Statistics” (1922) 

  This definition has 
nothing to do with 
probability! 
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 What is machine learning? 

  “A computer program is said to learn from 
experience E with respect to some class of 
tasks T and performance measure P if its 
performance at tasks in T, as measured by P, 
improves with experience E.”  
– Tom M. Mitchell, Machine Learning, 1997 

  This definition has nothing to do with 
probability, statistics, or even data! 
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 14 years of failure with logical rules 

  “As Steve Abney wrote in 1996, ‘In the space of 
the last ten years, statistical methods have 
gone from being virtually unknown in 
computational linguistics to being a 
fundamental given.’… after about 14 years of 
trying to get language models to work using 
logical rules, I started to adopt probabilistic 
approaches”.  
–  Peter Norvig, “On Chomsky”, 2010 

Introduction 

Prediction 

Statistics vs. 
machine 
learning 

Correlation 
and proxies 

Central 
tendency 

A positive 
example 

Conclusion 

References 



Correlates of Oppression Momin Malik 18 of 51 

 Repackaged statistics 

  “1980s–1990s work in machine learning 
often replayed insights available in 
traditional statistics… Indeed, it became 
increasingly clear through the 1990s that 
many ‘insights’ of connectionism were 
differently named versions of statistical 
techniques.”  
– Maggie Boden, Mind as Machine, 2006 
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 Transition “in a matter of a few years” 

  “At first, ML researchers developed… a 
collection of rather primitive (yet clever) set of 
methods to do classification… that eschewed 
probability. But very quickly they adopted 
advanced statistical concepts like empirical 
process theory and concentration of measure. 
This transition happened in a matter of a few 
years.”  
–  Larry Wasserman, “Rise of the Machines”, 2014 
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 A “second culture” of statistics 

  “In the past fifteen years, the growth in 
algorithmic modeling applications and 
methodology has been rapid. It has occurred 
largely outside statistics in a new 
community—often called machine learning
—that is mostly young computer 
scientists.”  
– Leo Breiman, “Statistical Modeling: The Two Cultures”, 

2001 
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 Names are strategically misleading 
  “So, it’s not real AI?” he asked.  

  “Oh, it’s real,” I said. “And it’s spectacular. But 
you know, don’t you, that there’s no simulated 
person inside the machine? Nothing like that 
exists. It’s computationally impossible.”  

  His face fell. “I thought that’s what AI meant,” 
he said. “I heard about IBM Watson, and the 
computer that beat the champion at Go, and 
self-driving cars. I thought they invented real 
AI.”  
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 Still, are differences 
  There is no “learning” (if there ever was) other than 

as metaphor 
  ML started off doing “algorithms” and still uses that 

term, but the logic is really one of statistical models 
  There are differences: statistics are used in ways 

anathema to traditional statisticians. No social 
theory, only optimal correlations. “Instrumentalist”, 
“data positivism” (Jones, 2018) 

  With this, ML found ways to get correlations in new 
types of data: images, audio, words 
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 Correlation and proxies 
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 Discrete version: the “majority class” 

False 
negative 

False 
positives 
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 Are correlations enough to predict? 

  Spurious (non-
causal) correlations 
can fit the data really 
well! 
  But they can break 

down 
  Google Flu Trends: 

half flu detector, half 
winter detector 

(Lazer et al., 2014) 
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 Correlations can fail 

Adapted 
from 

Santillana et 
al. (2014). 
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 Nobel prizes: cause is resources 

Resources 

Consume 
chocolate 

Science 
funding 

Good 
science 

A “causal  
graphical  
model”: 

Nobel 
prizes 
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 Correlations are proxies 

  Much of what machine learning has accomplished is 
finding ways to find correlations 

  E.g., between human labels and groups of pixels 
  But proxies can always be gamed, which makes them 

fail (“McNamara’s fallacy”) 
  And we need to know the target signal: in many 

cases, this must be laboriously, manually collected. 
“Automation’s last mile” (Mary Gray and Siddharth 
Suri, Ghost Work, 2019) 
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 Are proxies just? 
  Is it okay to use optimal proxies? 
  In the 1890s, life insurance companies charged more for 

African Americans, arguing that they had shorter life 
expectancy (Bouk, 2015) 

  Car insurance is still a “ghetto tax” (Fergus, 2013) 
  Example from Deborah Hellman: people who experience 

intimate partner violence have higher health insurance 
costs. Should we therefore charge them more? 

  Feminist and civil rights campaigners in the 1970s argued 
for collectivizing risk; they lost to the insurance industry 
and “actuarial fairness” (Horan, 2011) 
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 Gaming proxies 

(Despois, 2017) 
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 Gaming proxies in realtime 
(Eykholt 
et al., 
2018) 
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 The labor of the target signal 
“Source subject”: Marquese Scott 

Caroline Chan, “Everybody Dance Now: Motion Retargeting Video Subjects.” https://
youtu.be/PCBTZh41Ris 
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 Central tendency 
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 Correlations are a “central tendency” 
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 The problem with central tendency 

  Machine learning predictions are of a central 
tendency 
  Historically, the idea of using central tendencies 

was seen as strange and highly contested! 
  By choosing central tendency, we choose to 

punish outliers! 
  Central tendency can never treat people as 

individuals. No real “personalized medicine”, 
“individual risk scores” 
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 The “flaw of averages” 

(Rose, 2014) 
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 A positive example 
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 Genes correlated with breast cancer 

  Fancy paper from 
2002 (van’t Veer et 
al.) found 70 genes 
correlated with 
developing breast 
cancer 
  Of course the 

correlations were 
optimal, post-hoc. But 
did it generalize? 
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 Real-world testing: details 

  Before 
experiment 
(training data) 

  High model risk, 
low clinical risk: 
randomize. 
Chemo worse! 

  Low model risk, 
high clinical 
risk: chemo 
makes no 
difference 

Baseline Survival (no chemotherapy)
S

u
rv

iv
a

l 
w

it
h

o
u

t 
D

is
ta

n
t

M
e

ta
s
ta

s
is

 (
%

)

100

80

90

70

60

40

30

10

50

20

0

0 2 431 5 6 7 98

Year

Low clinical, high genomic

Low clinical and genomic

High clinical,

low genomic

High clinical and genomic

Clinicial says high risk, Model says low risk

100

80

90

70

60

40

30

10

50

20

0

0 1 2 3 4 5 6 7 8 9

Year

Chemotherapy

No chemotherapy

90 1 2 3 4 5 6 7 8

80

0

85

90

95

100

Year

Clinicial says low risk, Model says high risk

100

80

90

70

60

40

30

10

50

20

0

0 1 2 3 4 5 6 7 8 9

Chemotherapy

No chemotherapy

90 1 2 3 4 5 6 7 8

85

0

95

80

90

100

Baseline Survival (no chemotherapy)
S

u
rv

iv
a

l 
w

it
h

o
u

t 
D

is
ta

n
t

M
e

ta
s
ta

s
is

 (
%

)

100

80

90

70

60

40

30

10

50

20

0

0 2 431 5 6 7 98

Year

Low clinical, high genomic

Low clinical and genomic

High clinical,

low genomic

High clinical and genomic

Clinicial says high risk, Model says low risk

100

80

90

70

60

40

30

10

50

20

0

0 1 2 3 4 5 6 7 8 9

Year

Chemotherapy

No chemotherapy

90 1 2 3 4 5 6 7 8

80

0

85

90

95

100

Year

Clinicial says low risk, Model says high risk

100

80

90

70

60

40

30

10

50

20

0

0 1 2 3 4 5 6 7 8 9

Chemotherapy

No chemotherapy

90 1 2 3 4 5 6 7 8

85

0

95

80

90

100

Baseline Survival (no chemotherapy)
S

u
rv

iv
a

l 
w

it
h

o
u

t 
D

is
ta

n
t

M
e

ta
s
ta

s
is

 (
%

)

100

80

90

70

60

40

30

10

50

20

0

0 2 431 5 6 7 98

Year

Low clinical, high genomic

Low clinical and genomic

High clinical,

low genomic

High clinical and genomic

Clinicial says high risk, Model says low risk

100

80

90

70

60

40

30

10

50

20

0

0 1 2 3 4 5 6 7 8 9

Year

Chemotherapy

No chemotherapy

90 1 2 3 4 5 6 7 8

80

0

85

90

95

100

Year

Clinicial says low risk, Model says high risk

100

80

90

70

60

40

30

10

50

20

0

0 1 2 3 4 5 6 7 8 9

Chemotherapy

No chemotherapy

90 1 2 3 4 5 6 7 8

85

0

95

80

90

100

(Cardoso et al., 2016) 

Introduction 
 

Prediction 

Statistics vs. 
machine 
learning 

Correlation 
and proxies 

Central 
tendency 

A positive 
example 

Conclusion 

References 



Correlates of Oppression Momin Malik 45 of 51 

 Conclusion 

Introduction 

Prediction 

Statistics vs. 
machine 
learning 

Correlation 
and proxies 

Central 
tendency 

A positive 
example 

Conclusion 

References 



Correlates of Oppression Momin Malik 46 of 51 

 Final points 

  To use prior data is potentially to “optimize 
to the status quo” (Carr, 2014) 

  Every methodology has limitations, with 
consequences 

  No methodology is inherently more 
oppressive than others; connections to 
power are what make it so 
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 Other issues 
  Performativity: Idea that models, when applied, “reformat and 

reorganize the phenomena the models purport to 
describe” (Healy, 2015) 

  Quantification can’t get at meaning-making (Patton, 2015) 
  Statistics (and machine learning) assumes the world is entities 

with fixed properties; “it is striking how absolutely these 
assumptions contradict those of the major theoretical traditions 
of sociology” (Abbott, 1988) 

  Only valuing quantitative forms of evidence is a tool to deny lived 
experience (Lanius, 2011; Benjamin, 2019) 

  No amount of data is ever “enough” (Harford, 2014) 
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