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» Learning objectives

> Recognize what substance there is (and isn't) in
machine learning claims of “prediction”

> Understand the implications of using the central
tendency

> Link oppressive possibilities to uses of machine
earning as top-down, imposed optimization
pased on surveillable proxies for intimate
quantities
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¥ Outline

> Prediction

> Statistics vs. machine learning
> Correlation and proxies

> Central tendency

> A positive example
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oM > “"The essence of machine learning”

¥ Introduction
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“David, that’s way too much.” “The tooth fairy gave me 20 BUCKS!”

“We’re gonna be RICH!!!”
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¥ Prediction

¥ Prediction
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ae > Predict future behavior

MIT
Technology

> Prediction ReVieW Topics+ The Download Magazine Events

The Download What's up inemerging technology

Facebook is using Al to predict users’ future behavior and
selling that data to advertisers

In confidential documents seen by the Intercept Facebook touts its ability to “improve”
marketing outcomes with what it calls “loyalty prediction.”

Newspeak: The Al software that powers this capability, called “FBLearner Flow,” was first
announced in... Read more
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#% » Predict birdsong

¥ Prediction MIT
Technology

eVieW Topics+ The Download Magazine Event:

Rewriting Life

Scientists Can Read a
Bird’s Brain and
Predict Its Next Song

Next up, predicting human speech with a brain-computer
interface.

by Antonio Regalado  October 11, 2017
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¥ Prediction

¥ Predict fashion models success

(a) Fashion Model 1 (b) Fashion Model 4

(d) Fashion Model 7 (e) Fashion Model 8

Correlates of Oppression

(c) Fashion Model 6

(f) Fashion Model 9

MIT

Technology

eVieW Topics+ The Download Magazine Events
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AView from Emerging Technology from the arXiv

Machine Learning Algorithm Predicts Which
New Faces Will Make It as Fashion Models

A machine-learning algorithm picks out the fashion models
most likely to succeed.

September 1,2015
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el > Predict news

MIT
Technology

ReVieW Topics+ The Download Magazine

¥ Prediction

Intelligent Machines

Software Predicts Tomorrow’s
News by Analyzing Today’s and
Yesterday’s

Prototype software can give early warnings of disease or
violence outbreaks by spotting clues in news reports.

by Tom Simonite  February 1,2013

A method of using online information to
accurately predict the futurefcould transform
many industries.
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¥ Prediction

Mar 2010

Predicting the Future With Social Media

Sitaram Asur
Social Computing Lab
HP Labs
Palo Alto, California
Email: sitaram.asur@hp.com

Abstract—In recent years, social media has become ubiquitous
and important for social networking and content sharing. And
yet, the content that is generated from these websites remains
largely untapped. In this paper, we demonstrate how social media
content can be used to predict real-world outcomes. In particular,
we use the chatter from Twitter.com to forecast box-office
revenues for movies. We show that a simple model built from

Bernardo A. Huberman
Social Computing Lab
HP Labs
Palo Alto, California
Email: bernardo.huberman@hp.com

This paper reports on such a study. Specifically we consider
the task of predicting box-office revenues for movies using
the chatter from Twitter, one of the fastest growing social
networks in the Internet. Twitter !, a micro-blogging network,
has experienced a burst of popularity in recent months leading
to a huge user-base, consisting of several tens of millions of

Predicting the Future — Big Data, Machine Learning,

and Clinical Medicine

Ziad Obermeyer, M.D., and Ezekiel J. Emanuel, M.D., Ph.D.

1216

y now, it’s almost old news:

big data will transform med-
icine. It’s essential to remember,
however, that data by themselves
are useless. To be useful, data
must be analyzed, interpreted, and
acted on. Thus, it is algorithms —

N ENGLJ MED 375,13

not data sets — that will prove
transformative. We believe, there-
fore, that attention has to shift to
new statistical tools from the
field of machine learning that
will be critical for anyone practic-
ing medicine in the 21st century.

The New England Journal of Medicine

First, it's important to under-
stand what machine learning is
not. Most computer-based algo-
rithms in medicine are “expert
systems” — rule sets encoding
knowledge on a given topic, which
are applied to draw conclusions

NEJM.ORG SEPTEMBER 29, 2016

Downloaded from nejm.org at Harvard Library on November 8, 2018. For personal use only. No other uses without permission.
Copyright © 2016 Massachusetts Medical Society. Al rights reserved.
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¥ Predict... the future?
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L]
pl’e dlCt verb
pre-dict | \pri-‘dikt@\
predicted; predicting; predicts

Definition of predict
transitive verb
: to declare or indicate in advance

especially : foretell on the basis of observation, experience, or scientific reason

intransitive verb

: to make a prediction

Other Words from predict
Synonyms

Choose the Right Synonym
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¥ Prediction is not prediction

> “[t's not prediction at all! | have not found a
single paper predicting a future result. All of
them claim that a prediction could have
been made; i.e. they are post-hoc analysis
and, needless to say, negative results are
rare to find."

- Daniel Gayo-Avello, “l Wanted to Prediction Elections with
Twitter and all | got was this Lousy Paper”, 2012
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¥ Prediction is not prediction

> Predictions are post-hoc|correlations

> Maybe these work as a basis for prediction,
but maybe not

> |s static prediction: not prediction under
change, nor prediction under intervention.

Not an inevitable, or even natural, usage of
“prediction” (Rescher, 1998)
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» Statistics vs. machine learning
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4ol » What is statistics?

> "briefly, and in its most
concrete form, the
object of statistical
methods is the
reduction of data.”

- R. A. Fisher, “On the
Mathematical Foundations
of Theoretical

Statistics” (1922)

> This definition has
nothing to do with
probability!
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» What is machine learning?

> “A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P if its
performance at tasks in T, as measured by P,
improves with experience E.”
- Tom M. Mitchell, Machine Learning, 1997

> This definition has nothing to do with
probability, statistics, or even data!
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? 14 years of failure with logical rules

> “"As Steve Abney wrote in 1996, ‘In the space of
the last ten years, statistical methods have
gone from being virtually unknown in
computational linguistics to being a
fundamental given.'... after about 14 years of
trying to get language models to work using
logical rules, | started to adopt probabilistic
approaches”.

- Peter Norvig, "On Chomsky"”, 2010
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¥ Repackaged statistics

> “1980s-1990s work in machine learning
often replayed insights available in
traditional statistics... Indeed, it became
increasingly clear through the 1990s that
many ‘insights’ of connectionism were
differently named versions of statistical

techniques.”
- Maggie Boden, Mind as Machine, 2006
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¥ Transition “in a matter of a few years”

> “At first, ML researchers developed... a
collection of rather primitive (yet clever) set of
methods to do classification... that eschewed
probability. But very quickly they adopted
advanced statistical concepts like empirical
process theory and concentration of measure.
This transition happened in a matter of a few

years.’
- Larry Wasserman, “Rise of the Machines”, 2014
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¥ A "second culture” of statistics

> “In the past fifteen years, the growth in
algorithmic modeling applications and
methodology has been rapid. It has occurred
largely outside statistics in a new
community—often called machine learning
—that is mostly young computer

scientists.”

- Leo Breiman, “Statistical Modeling: The Two Cultures”,
2001
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¥ Statistics vs.
machine
learning

» Names are strategically misleading

Meredith Broussard

Artificial
Intelligence

MISUNDERSTAND THE WORLD

Correlates of Oppression

> "“So, it's not real Al?" he asked.

> "Oh, it's real,” | said. “And it's spectacular. But
you know, don't you, that there's no simulated
person inside the machine? Nothing like that
exists. It's computationally impossible.”

> His face fell. “I thought that's what Al meant,”
he said. “l heard about IBM Watson, and the
computer that beat the champion at Go, and

self-driving cars. | thought they invented real
Allll
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=M > Names are strategically misleading

[\ Baron Schwartz @
b Follow v
¥ Statistics vs. Y @xaprb

machine

learning When you’re fundraising, it’s Al statistics

When you’re hiring, it’s ML

When you’re implementing, it’s linear
regression

When you’re debugging, it’s printf()
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Machine Learning
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> Still, are differences

> There is no “learning” (if there ever was) other than
as metaphor

> ML started off doing “algorithms” and still uses that
term, but the logic is really one of statistical models

> There are differences: statistics are used in ways
anathema to traditional statisticians. No social
theory, only optimal correlations. “Instrumentalist”,
“data positivism” (Jones, 2018)

> With this, ML found ways to get correlations in new
types of data: images, audio, words
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e > Co-related: Nobel prizes and chocolate
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¥ Correlation
and proxies

¥ Discrete version: the “majority class"”
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» Are correlations enough to predict?

> Spurious (non-
causal) correlations
can fit the data really
well!

> But they can break
down

> Google Flu Trends:
half flu detector, half
winter detector

(Lazer et al., 2014)
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¥ Correlation
and proxies

¥ Correlations can fail

CDC-reported ILI rate (%)

10

oo

(o]

o

0

—CDC - Google flu trends
N + S Adapted
Original GFT Revised GFT from
i Santillana et
. n al. (2014).
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» Correlations are proxies

> Much of what machine learning has accomplished is
finding ways to find correlations

> E.g., between human labels and groups of pixels

> But proxies can always be gamed, which makes them
fail (“McNamara's fallacy”)

> And we need to know the target signal: in many
cases, this must be laboriously, manually collected.
"Automation’s last mile” (Mary Gray and Siddharth
Suri, Ghost Work, 2019)
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> Are proxies just?

> |s it okay to use optimal proxies?

> In the 1890s, life insurance companies charged more for
African Americans, arguing that they had shorter life
expectancy (Bouk, 2015)

> Car insurance is still a "ghetto tax” (Fergus, 2013)

> Example from Deborah Hellman: people who experience
intimate partner violence have higher health insurance
costs. Should we therefore charge them more?

> Feminist and civil rights campaigners in the 1970s argued
for collectivizing risk; they lost to the insurance industry
and "actuarial fairness” (Horan, 2011)

Correlates of Oppression 31 of 57 Momin Malik



>«

BERKMAN
KLEIN CENTER

¥ Correlation
and proxies

> Gaming proxies

Original image

Temple (97%)

(Despois, 2017)
Correlates of Oppression

Perturbations
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Adversarial example

Ostrich (98%)
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FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

(Eykholt
et al,,
2018)

¥ Introduction

Prediction

Statistics vs.
machine
learning

Correlation
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Central
tendency

A positive
example

Conclusion

References
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¥ Introduction
¥ Prediction

¥ Statistics vs.
machine
learning

Everybody Dance Now

¥ Correlation
and proxies

Motion Retargeting Video Subjects

¥ Central
tendency

. Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros

UC Berkeley

¥ Conclusion

¥ References

Caroline Chan, “Everybody Dance Now: Motion Retargeting Video Subjects.” https://
youtu.be/PCBTZh41Ris
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» Central tendency
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¥ Central
tendency

¥ Correlations are a “central tendency”
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» The problem with central tendency

> Machine learning predictions are of a central
tendency

> Historically, the idea of using central tendencies
was seen as strange and highly contested!

> By choosing central tendency, we choose to
punish outliers!

> Central tendency can never treat people as
individuals. No real “personalized medicine”,
“individual risk scores”
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(Rose, 2014)
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¥ A positive example
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e > Genes correlated with breast cancer

Correlates of Oppression
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Fancy paper from
2002 (van't Veer et
al.) found 70 genes
correlated with
developing breast
cancer

Of course the
correlations were
optimal, post-hoc. But
did it generalize?
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¥ A positive
example

» Real-world testing

High

Risk via
correlations
with gene
expression

Low

(Cardoso et al., 2016)

Correlates of Oppression

“Clinical” risk
High Low

Model says
treat,
doctor says
don't

Both tests
agree, high
risk

Doctor says Both tests
treat, model agree, low
says don't risk

41 of 51

. Treat with
chemo
. with chemo

Don’t treat
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w>m > Real-world testing

“Clinical” risk

High Low
Both tests . Treat with
Sl  agree, high chemo
risk
Risk via
correlations Don't treat
with gene with chemo
expression
> Apese Chemo- Both tests
e Low therapy is agree, low
similar risk - [

(Cardoso et al., 2016)
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w>m > Real-world testing

“Clinical” risk

High Low
Both tests Chemo- . Treat with
High agree, high therapy is chemo
risk worse!

Risk via

correlations Don't treat

with gene with chemo
expression

> A positive Chemo- Both tests
example Low therapy is agree, low (Still: whose data

similar risk went into the model?
Who were the
subjects in the

(Cardoso et al., 2016) experiment?)
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¥ A positive
example
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¥ Real-world testing: details

Clinicial says low risk, Model says high risk
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90 100+ _—
804 No chemotherapy
70+ %7
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> High model risk,
low clinical risk:

randomize.
Chemo worse!
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404
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Clinicial says high risk, Model says low risk

. S
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> Low model risk,

high clinical
risk: chemo
makes no
difference
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¥ Conclusion
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? Final points

> To use prior data is potentially to "optimize
to the status quo” (Carr, 2014)

> Every methodology has limitations, with
consequences

> No methodology is inherently more
oppressive than others; connections to
power are what make it so
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¥ Other issues

> Performativity: Idea that models, when applied, “"reformat and
reorganize the phenomena the models purport to

describe” (Healy, 2015)
> Quantification can't get at meaning-making (Patton, 2015)

> Statistics (and machine learning) assumes the world is entities
with fixed properties; “it is striking how absolutely these

assumptions contradict those of the major theoretical traditions
of sociology” (Abbott, 1988)

> Only valuing quantitative forms of evidence is a tool to deny lived
experience (Lanius, 2011; Benjamin, 2019)

> No amount of data is ever “enough” (Harford, 2014)
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