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Rizk, who asked the following on our

mailing list:

I am aware of data biases, but am trying

to single out what can be biases in

algorithms over and above what is/are

already in the data, and beyond the

point that algorithms are designed by

experts without incorporating the input

of communities affected. Can algorithms

themselves be marginalizing, or does it

all depend on the data? And if they can

be, how so?

First, while much of the conversation

about AI and machine learning is

around “algorithms,” and this is the

term that people in machine learning

use, this is misleading (I am working



on an academic article about this).

Machine learning “algorithms” are

actually statistical models, and are

better understood as such.

So, the better question is can statistical

models be marginalizing, apart from

data? The short answer is, “yes, but it

doesn’t really matter when compared

to the choice to use machine learning.”

The long answer is that there are three

layers to consider: (1) whether to use

quantitative modeling at all, (2)

whether to do “explanatory” modeling

or “predictive” modeling (machine

learning falls into the latter) and,

lastly, (3) aspects of the model. The

direct answer to the question that



motivates this post falls into (3), but I

think (1) and (2) give crucial context.

Caution: I will be throwing out technical

terms when I give examples, and do not

explain most of these, as doing so would

require making this piece into a primer

about modeling. But hopefully, an

interested reader can look up speci�c

terms to learn more.

(1) Choosing to use
quantitative (and,
specifically, statistical)
modeling
The choice to use quantitative

modeling at all has consequences. For

a discussion of the kind of things that



quantitative models can never capture,

I enjoy this quote from Michael Quinn

Patton (2014) [bold emphasis added]:

“During the writing of this book, my first

grandchild was born, and this book is

dedicated to her. The hospital records

document her weight, height, health,

and Apgar score — activity (muscle

tone), pulse, grimace (reflex response),

appearance, and respiration. The

mother’s condition, length of labor, time

of birth, and hospital stay are all

documented. These are physiological

and institutional metrics. When

aggregated across many babies and

mothers, they provide trend data about

the beginning of life — birthing. But

nowhere in the hospital records will



you find anything about what the

birth of Calla Quinn means. Her name

is recorded but not why it was chosen by

her parents and what it means to them.

Her existence is documented but not

what she means to our family, what

decision-making process led up to her

birth, the experience and meaning of the

pregnancy, the family experience of the

birth process, and the familial, social,

cultural, political, and economic context

that is essential to understanding what

her birth means to family and friends in

this time and place. A qualitative case

study of Calla’s birth would capture and

interpret the story and meaning of her

entry into the world from the



perspectives of those involved in and

touched by her coming into our lives.”

In the immortal words of George Box,

“all models are wrong, but some are

useful.”

All quantitative models simplify the

world. If they didn’t, they wouldn’t be

models! (as in the famous dictum, “the

map is not the territory”—but, to Box’s

point, that doesn’t mean maps are

useless.) Simplification means choices

“All models are wrong, but some are useful.” From

George E. P. Box’s 1979 technical report, “Robustness

in the Strategy of Scienti�c Model Building,”

Technical Summary Report #1954, University of

Madison-Wisconsin Mathematics Research Center.

https://en.wikipedia.org/wiki/Map%E2%80%93territory_relation


about what is and is not important,

and these choices always have

consequences.

We could phrase this simplification,

and the impossibility of capturing

everything in the world, as a trivial

way in which all are models are

“biased”;¹ but below, especially in

section (3), I consider if there can be

properties of a given statistical model

that introduce a speci�c bias.

There are a few types of quantitative

modeling, but for modeling social

systems, statistical modeling is the

dominant type.²

Something that is mostly inescapable

once the choice has been made to



specifically use statistical models

(which includes machine learning) is

we assume the world can be divvied up

into entities (observations), and

properties of those entities (i.e.,

variables). This is not inevitable. In a

classic article, sociologist Andrew

Abbott (1988) remarked [emphasis

added],

“…it is striking how absolutely these

assumptions contradict those of the

major theoretical traditions of

sociology. Symbolic interactionism

rejects the assumption of fixed entities

and makes the meaning of a given

occurrence depend on its location — 

within an interaction, within an actor’s

biography, within a sequence of events.



Both the Marxian and Weberian

traditions deny explicitly that a given

property of a social actor has one and

only one set of causal implications.

Marx’s dialectical causality makes

events produce an opposite as well as a

direct outcome, while Weber and the

various hermeneutic schools treat

attributes as infinitely nuanced and

ambiguous. Marx, Weber, and work

deriving from them in historical

sociology all approach social causality in

terms of stories, rather than in terms of

variable attributes.”

Abbott notes that some of these

assumptions can be relaxed (e.g., a

time series lets entities change), but



those relaxations don’t fundamentally

change this schema for the world (e.g.,

in a time series, at a point in time an

entity is still fixed; there is, for

example, no notion of it changing

depending on who is perceiving it).

Neither is this view of the world

natural, or obvious. The application of

statistical modeling to the social world

was one that developed over time, and

was not necessarily appropriate

(Freedman, 2005). The idea that we

can use an average of a population to

characterize it was critiqued when first

introduced (Donnelly, 2016). And

statistical modeling has normative

consequences (Rose, 2016) and

political uses, like delegitimizing lived



experiences: as Candice Lanius (2015)

put it bluntly, “Your Demand for

Statistical Proof is Racist.”

She writes:

Header of Candice Lanius, “Fact Check: Your

Demand for Statistial Proof is Racist,” Cyborgology

blog, 2015,

https://thesocietypages.org/cyborgology/2015/01/12

/fact-check-your-demand-for-statistical-proof-is-

racist/.

https://thesocietypages.org/cyborgology/2015/01/12/fact-check-your-demand-for-statistical-proof-is-racist/


A white woman can say that a

neighborhood is “sketchy” and most

people will smile and nod. She felt

unsafe, and we automatically trust her

opinion. A black man can tell the world

that every day he lives in fear of the

police, and suddenly everyone demands

statistical evidence to prove that his life

experience is real. Anything approaching

a “post-racial society” would not require

different types of evidence to tell our life

stories: anecdotal evidence for white

people, statistics for black people.

That is, it is not inevitable that we use

quantitative data and modeling for,

say, demonstrating racism: we could



just believe people when they describe

their lived experiences.

(2) The distinction between
prediction and explanation
Machine learning is done almost

entirely with statistical machinery,

although used in ways that have been

anathema to classical statisticians (see

Breiman, 2001, and Jones, 2018).

Despite the same underlying math, one

important distinction between

machine learning and statistics is the

distinction between models that are

are “explanatory” and models that are

“predictive”, something that is

enormously consequential and I am



always surprised to see not discussed

constantly.

“Explanatory” models try to tell us

something about the underlying

process. “Predictive” models try only to

produce a reliable output (one that

matches what happens in the world)

given an input. The “learning” in

machine learning refers to a program

combining data with some

assumptions to “learn” to produce a

reliable output (which has almost

nothing to do with the learning studied

with, say, sociocultural learning

theory).

While we might assume that prediction

and explanation are the same task, it



turns out to not be the case. To explain

why, I will first explain the definitions

of “prediction” and “bias” as technical

terms (as the technical terms do not

map onto colloquial understandings or

dictionary definitions).

First, in statistics and machine

learning, “prediction” is a technical

term, defined as minimizing the error

between a combination of input

variables (also called covariates,

independent variables, explanatory

variables, or predictors), and a target

output variable, � (also called the

dependent variable or the response).

This can be achieved through

correlations alone (Lipton, 2015).

Minimizing error is called “prediction”



because we assume that the way in

which correlations minimized errors in

the past is a reliable guide to how they

might do so in the future. Of course, if

something in the world changes, then

this assumption will fail; previously

observed correlations will not be a

reliable guide, and “predictions” will

fail to actually predict.

Second, in statistics and machine

learning, there is a formal definition of

bias in models. This maps somewhat

onto what we might mean by a model

being biased, but relates to a

metaphysical idea of what modeling

does rather than to lived experience.



Specifically, we hypothesize that there

is a “true”, underlying relationship

between � and �, � = �(�). For

example, in a linear model, � is

multiplying � by �₁ and adding �₀. We

take some assumptions about what

forms � can take, and combine this

with data to make an estimate of � (or

things within a specific form of �, like

the �’s), which we notate as �̉ ̂and read

as “eff-hat” (or, for the specific form �
in terms of �’s, estimate as �̉’̂s, and

read as the “beta-hats”). Much of

statistical theory, and machine

learning theory, is devoted to studying

the relationship between �̉ ̂and �: do

our assumptions about �, and the way



in which we use data, give us an �̉ ̂that

is close to �?

The bias of an estimator is defined as

the amount by which �̉ ̂departs from �
(in expected value).

The way in which this somewhat maps

onto what we colloquially mean by bias

is, if our �̉ ̂is biased in comparison to �,

it can lead to marginalization by not

treating people “correctly”. I give an

example of this below in section (3),

where I set up a toy example where I

set �(�) = 2 + sin(�), and consider �̉’̂s
that assume some relationship

between � and � other than the true,

sinusoidal one.



But when actually doing modeling in

the real world, there is no such thing as

the “true” �, let alone one that can be

known! Consequently, we can never

know if a model is biased under this

theoretical notion of bias (of not

matching a “true”, “underlying”

process). Whereas we can know, and

should strive to know, if a particular �̉̂

leads to social bias and

marginalization. So the theoretical

notion is only so useful.

With these definitions of “prediction”

and “bias”, I can get to the central

weirdness about how explanatory

modeling is different from predictive

modeling: quite surprisingly, it turns

out that biased, “wrong” models, that



are actually worse at re�ecting causal

processes than other models, can do

better at “prediction”! (Again, so long

as the world doesn’t change, and under

this metaphysical notion of a “true”

model such that we can say whether a

given model is right or wrong.)

Explanatory modeling seeks out

unbiased models, but predictive

modeling is happy to sacrifice being

unbiased in favor of better predictions.

The reasons why this divide exists are

complicated and deeply counter-

intuitive, and have to do with the “bias-

variance tradeoff” (see Shmueli,

2010)⁴ as well as the difficulty of

making models that reflect causal

processes in the first place (see again



Breiman, 2001; but also, perhaps no

modeling can ever truly get at

causality). Less philosophically, it is

sometimes the case that isolating the

precise relationship between one

specific input variable and the target

output variable sometimes requires

sacrificing how well we can model the

output variable as a whole (as is

frequent in the use of “instrumental

variables” in econometrics).

This means that machine learning

models that predict better than theory-

driven statistical models do not do so

because they are secretly “more right”;

they often do so despite being less right.

And, their predictive success is always

fragile.



On the one hand, this leads to the

arguments from statistics,

econometrics, and “causal learning”

that, even if our only goal is prediction,

if we know about a causal relationship

it will lead to us making predictions

that are robust to changes in context

(even if the short-term predictions

aren’t as good).

But on the other hand, and more

profoundly, this means that predictive

modeling may be useless for finding

out how to intervene in a system. As a

concrete illustration, very different

models, suggesting very different

causal mechanisms, can make equally

good predictions (for an example of



this, see Sendhil Mullainathan’s 2017

article with Jann Spiess).

Machine learning is entirely

“predictive” (with the possible

exception of some things in the area of

probabilistic graphical models). In

contrast, statistics is predominantly

“explanatory”, although (for better or

worse) modern statistics has followed

machine learning and has been taking

up predictive modeling more and

more.

(3) Aspects of the model
For explanatory modeling, there are

some specific choices to be made about

which assumptions to make (see again

Abbott), including but not limited to:



Is the relationship between the

[mean of the] response and the

covariates linear, or are there

nonlinear relationships? Which

covariates have nonlinear

relationships, and what are the

forms of the nonlinearity?

Does the model have a parametric

form, or is it “nonparametric”?

Is the model additive, or are there

interaction effects? Between which

covariates?

Is imputation done, and how?

Otherwise, how are missing values

handled?

What is the assumed distribution of

the response variable? (E.g.,

•

•

•

•

•



normal, Binomial, Poisson, etc.)

Are priors and/or regularization

and/or variable selection used?

What are the respective

distributions and/or amounts

and/or methods?

Do we assume there is no

dependency structure between

errors? If not, how are we

accounting for dependencies?

There are consequences for all of the

above choices. We can get a very

different picture of the world from

different choices, and in many cases

(unlike in the example below) there

isn’t necessarily a “right” choice.

(Ideally, we get results across different

•

•



modeling decisions that broadly agree;

see Silberzahn et al., 2018.)

Introducing an interaction effect or a

nonlinear term, or using a different

functional form, can give very different

results.

Here is an example of some

“synthetic”, or “toy” data (in statistics,

often we use simulated data to ask, “if

the world worked the way we assume

it works, do our techniques do what we

want them to do?” This is a low bar to

clear, but it can be a helpful exercise).

I take 200 values between 0 an 10, and

choose a deterministic relationship, �
= 2 + sin(�). I run these 200 values

through the � in the equation, and



each time add a “noise” term � (to

partially disguise the relationship) to

get a � corresponding to each �, and

then plot these pairs.

If we didn’t look at a scatterplot, and

just fit the model � = �̉₀̂ + �̉₁̂ � and

looked at the results, we would see

that the slope is not significantly

A scatterplot of synthetic data, drawn from � = 2 +
sin(�) + �, where � ~ �(0, 2⁻²).



different from zero; the estimated �̉₁̂ is

-0.03755, � = 0.185 (i.e., we cannot

reject the null hypothesis that �₁ ≠ 0).

We might erroneously conclude that

that there is no relationship between �
and �.

(Note that if we were doing predictive

modeling/machine learning, we would

be looking at the mean squared error

on held-out data, and not at statistical

significance; and we would likely try

models other than ones only

considering linear relationships. But if,

for some reason, out of the models we

considered this was the best-

performing one and we selected it,

then using this in the world would

potentially marginalize people in its



inaccuracy of failing to recognize the

relationship between � and �.)

But the assumption of a linear

relationship is one we are able to test

by looking at the plot. We can see the

fit is quite poor.

It seems that the relationship between

� and � is not a linear one. So, we can

The �t of � = �̉̂₀ + �̉̂₁ �. Clearly it does not �t well!



try adding a quadratic term, �², to the

regression.

This is not much of an improvement.

But, driven by theory or by looking at

the scatterplot, we might try to fit � =

�̉₀̂ + �̉₁̂ sin(�), a model with a

trigonometric term. This is fitting to

The �t of � = �̉̂₀ + �̉̂₁ � + �̉̂₂ �², a model with a
quadratic term.



the “correct” model, as it is the same as

the formula that originally generated

the data with �₀ = 2 and �₁ = 1.³ This

works perfectly:

In this fit, the estimated intercept �̉₀̂ is

1.996, with 95% confidence interval

[1.904, 2.088] and the estimated �̉₁̂
for sin(�) is 1.083, with 95%

The �t of � = �̉̂₀ + �̉̂₁ sin(�), a model with a
trigonometric term.



confidence interval [0.947, 1.219].

Both intervals contain the true value,

and the estimates are significant at � <

0.001.

Another option is a nonparametric fit.

Nonparametric techniques make fewer

assumptions about functional form of

the relationship of � to �, and instead

fit curves to the “shape” of the data.



This is much better than the linear and

quadratic term fits, but not as good as

the fit of the “correct” model. And, if

our goal was to understand the

relationship between � and �, this may

not be a good approach as we don’t get

any information other than what is in

the graphical representation above

A “nonparametric” �t (span chosen from minimum

MSE on a held-out 10%).



(e.g., no estimated �̉’̂s, not even an

intercept term).⁵

In explanatory modeling, we try to use

a mixture of theory, reasoning,

intuition, testing (including looking at

scatterplots, like above!), and

experience to make these choices.⁶

For predictive modeling, the answers to

the above questions will be,

“whichever gives the best predictive

performance.”

Choices that have to be made for both

explanatory and predictive modeling:

The choice of optimization objective

or “loss function” (this determines

how a model is fit to data).

•



The criteria we use for choosing one

out of multiple models (perhaps the

criteria is accuracy, but maybe it’s

based on precision and recall; in

explanatory modeling, maybe it’s

based on F-tests for nested models).

This can sometimes be folded into

the loss function (e.g., we can have

a loss function that penalizes false

negatives more heavily than false

positives to get a weighted accuracy

we can use), but not always.

How to do model goodness-of-fit-

checking (or, in machine learning,

more narrowly, where goodness-of-

fit is always “predictive

performance” and always checked

•

•



by “cross-validation”, how that

cross-validation is carried out).

These decisions have consequences,

especially if the loss function can’t or

doesn’t map perfectly onto what we

want in terms of social outcomes

(O’Neil, 2014).

Still, even for predictive modeling,

whether the best-performing model is

linear or not, additive or not,

parametric or nonparametric, uses

regularization or not, etc., can have

consequences for what kinds of errors

are made, and what kinds of processes

are picked up or missed.

I don’t have real-world examples (and I

suspect, beyond the



explanatory/predictive distinction, it

would be hard to identify a choice of

model as uniquely responsible for

some unjust outcomes), but I can give

a hypothetical example of logistic

regression versus a decision tree.

Logistic regression fits a continuous

relationship between some covariate

and the probability of having a specific

label. So, a logistic regression would

report something like, for each year

older somebody is, their “odds” of

having a label increases by 1.1 times.

In contrast, a decision tree needs to

discretize variables. So, a fitted

decision tree would have to have some

division, like age < 16.5, along which



to split data in the process of arriving

at an outcome. (Multiple discrete splits

can approximate a continuous

relationship, but this is not something

decision trees are good at doing).

Decision trees also automatically pick

up on interaction effects, for example

splitting along age at different points

for different sexes, and nonlinear (or

more accurately, nonmonotonic)

effects, for example splitting along age

< 16.5 at one point and then further

down splitting at age > 29.5.⁷

(For more on decision trees, see a draft

paper I have: Malik, 2019).

While interaction and nonlinear terms

can be used in a logistic regression,



respectively here by including an

“age×sex” term, and an “age²” term,

such terms need to be specifically (and

manually) put into the model to be

considered, and the number of

possible such terms grows

exponentially in the number of

variables which makes it hard to do

automatically.⁸

Perhaps a logistic regression that did

not consider interaction effects

between race and gender would be

marginalizing.⁹ Perhaps a decision tree

has one boundary where being slightly

above or below a cutoff leads to vastly

differential treatment, which could

also be marginalizing.



But these consequences are hard to

anticipate before fitting the model to

data. A better way is often to look at

the kinds of errors a model makes after

it is already fitted (and comparing it to

the errors of other candidate models).

What might this look like? One

example is

http://aequitas.dssg.io/example

(disclosure: I was a 2017 Data Science

for Social Good fellow, but am not

involved in Aequitas).

Conclusion
I return to another part of the

motivating question: can there be

problems when models “are designed

http://aequitas.dssg.io/example


by experts without incorporating the

input of communities affected”?

What would it mean to incorporate the

input of affected communities?

I think the most important thing when

working with a community is first

deciding to use quantitative modeling

in the first place. If a community

doesn’t agree, then the ethical thing to

do is probably to not use modeling. This

is a perfectly legitimate stance to take,

as quantitative modeling is not always

applicable or even helpful, and can

have negative repercussions (again,

see Rose, 2016, and Lanius, 2015).

Next, the community should have

input as to whether the model should



try and capture or reflect causal

processes and intuitions, or if

predictive performance (based, for

example, on non-causal correlations) is

the only goal. If the former,

explanatory statistical modeling

should be used, and only in the latter

case should machine learning

“algorithms” be used. Making a

decision about this may require

educating people about the counter-

intuitive peculiarities of modeling, the

difficulty of which might end up being

another reason to not use modeling.¹⁰

So, should data scientists seek

community input when deciding

whether to use, say, a decision tree or a

logistic regression? I’m not sure how



much this might matter. In predictive

modeling/machine learning, the

domain knowledge of “subject matter

experts” is valued for proposing

covariates and

interactions/transformations to

include in a model. Perhaps input can

help decide on variables to exclude

(note, however, that

sensitive/protected attributes are often

correlated with every other input

variable, such that exclusion is not

sufficient for protection), but for

inclusion, if a given suggestion doesn’t

help prediction, it shouldn’t be

included (unlike in explanatory

modeling). And in many cases, domain

expertise turns out to not help the task



of prediction, and purely data-driven

approaches produce better-performing

models (although they will likely be

less robust to changes over time and in

context). So long as the decision has

been made to use predictive modeling,

this is the place where I would say the

modeler’s expertise should be given

priority. Plus, as I said above, it’s hard

to anticipate how specific aspects of a

given model might lead to

marginalization when used for a

specific set of data.

But a community should absolutely be

involved in looking at the results of a

predictive model—and perhaps, on

that basis, deciding not to use



predictive modeling (or any modeling)

after all.

Endnotes
¹ While phrased as specific to

abstractions in machine learning, a

2019 article by Andrew Selbst, danah

boyd, Sorelle Friedler, Suresh

Venkatasubramanian, and Janet

Vertesi applies quite generally to

“traps” of modeling. Mainly: just

because abstractions seem powerful

does not mean that abstraction can do

everything, which can be hard to

accept for those trained in modeling.

² One alternative is simulation

modeling, although I think this

ultimately has more drawbacks than



benefits; see my discussion in Pfeffer &

Malik (2017). Mathematical sociology,

microeconomics, and physicists’

approaches to social systems is

frequently another type of quantitative

modeling that doesn’t have a specific

label: this modeling frequently does

not make use of data except for coarse

confirmatory comparisons, instead

relying on arguments made with

equations and derivations, and

perhaps from a specific underlying

framework such as game theory.

³ In general, when we interpret fitted �
parameters, we interpret them under

the assumption that the model is

“correct”, or approximately so: if but if

the model is completely wrong, the



fitted parameters are worthless for

interpretation.

⁴ The bias-variance tradeoff is a

derivation that shows that the

expected value of the overall quantity

(� –�̉(̂�))², which we call the loss, is

sometimes minimized by an �̉ ̂that is

biased, but has lower variance than an

unbiased �̉.̂ While the derivation is

clear enough, the implication is very

strange and counter-intuitive indeed,

which is explored quite well in Shmueli

(2010).

⁵ Nonparametrics are powerful when

we don’t have any insight into the

functional form of the data, but the

“correct” model, insofar as there can be



such a thing, is better. Another

drawback is that nonparametrics can

be harder to use for explanation, e.g.,

we don’t get fits of the � parameters

that we can interpret substantively to

learn about the underlying process.

Nonparametrics are popular in modern

statistics if mostly unknown in social

science, and much of machine learning

can be understood as a “rebranding of

nonparametric statistics” (Shalizi,

2018).

⁶ More complex considerations are in

more specific functional form of the

relationship between the response, the

covariates, and the errors: choices to

be made here includes using binning or

otherwise transforming the coding of



the response or the covariates, taking

logarithmic or other “variance-

stabilizing” transformations, and using

survival models, time series models,

spatial models, network models, item-

response models,

hierarchical/multilevel models, and

many more.

⁷ Decision trees are also highly

unstable to changes in data: slightly

different data can produce vastly

different trees, although often with

similar predictive performance in the

end, but I’m not sure I can think of a

way in which this could be

marginalizing.



⁸ Possible approaches include

polynomial features with the lasso, and

kernel methods — although with

enough variables even these would be

infeasible.

⁹ There is a connection to

intersectionality here, but note that

true intersectional feminist theory

would not accept the

discretization/quantification of race

and sex/gender that would be required

for use in a statistical model.

¹⁰ I explicitly avoided talking about

problems with data, as there is lots of

critical material about this already; but

I emphasize that having community

input or even determination about



which variables and measures to use,

and incorporating community

knowledge about what measures fail to

capture and sources of bias in data, is

critical. Qualitative research, and

specifically Participatory Action

Research, can be a systematic way of

going about this.
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Appendix
R code for generating the images, and

doing associated analysis.

install.packages("magrittr") 
library(magrittr) # Enables 
piping, %>%, for more readable 
code

set.seed(201904) # For 
reproducibility 
set.seed(runif(1)*10000000) # 
But mixing it up a bit 
n <- 100 # Number of 
observations 



x <- sort(runif(n = n, min = 0, 
max = 10)) 
y <- 2 + rnorm(n = n, mean = 
sin(x), sd = .5) 
summary(lm(y~x)) # For 
reporting slope and 
significance 
(fit <- summary(lm(y ~ 
sin(x)))) # Same 
coef(fit) %>% round(3) # Get 
estimates and confidence 
intervals 
c(coef(fit)[1,1] - 
1.96*coef(fit)[1,2],  
  coef(fit)[1,1] + 
1.96*coef(fit)[1,2]) %>% 
round(3) 
c(coef(fit)[2,1] - 
1.96*coef(fit)[2,2],  
  coef(fit)[2,1] + 
1.96*coef(fit)[2,2]) %>% 
round(3)

w <- 600 # image width 
h <- 400 # image height 



par(mar = c(3.5,3.5,0,0)+.5) # 
decrease borders

png("scatterplot.png", width = 
w, height = h) 
plot(x, y, pch = 19, asp = 1, 
     xlab = 
expression(italic(x)),  
     ylab = 
expression(italic(y))) 
dev.off()

png("linear_fit.png", width = 
w, height = h) 
plot(x, y, pch = 19, asp = 1, 
     xlab = 
expression(italic(x)),  
     ylab = 
expression(italic(y))) 
lm(y~x) %>%  
  abline(col = 2, lwd = 2) 
dev.off()

png("quadratic_fit.png", width 
= w, height = h) 
plot(x, y, pch = 19, asp = 1, 



     xlab = 
expression(italic(x)),  
     ylab = 
expression(italic(y))) 
lm(y ~ x + I(x^2)) %>%  
  predict %>%  
  lines(x, ., col = 2, lwd = 2) 
dev.off()

png("trigonometric_fit.png", 
width = w, height = h) 
plot(x, y, pch = 19, asp = 1, 
     xlab = 
expression(italic(x)),  
     ylab = 
expression(italic(y))) 
lm(y ~ sin(x)) %>%  
  predict %>%  
  lines(x, ., col = 2, lwd = 2) 
dev.off()

# Tuning parameter selection 
from cross-validation.  
# Randomly partition data to 
fit/train, and tune/validate.  
train <- 



sample(c(rep(T,floor(.9*n)),  
                  
rep(F,ceiling(.1*n)))) 
mse <- function(x1,x2) 
mean((x1-x2)^2) 
spans <- (10:90)/100 # Tuning 
parameter range 
loss <- lapply(spans, # 
Calculate loss for all spans 
         function(i)  
           loess(y[train] ~ 
x[train], span = i) %>%  
           predict(newdata = 
x[!train]) %>% 
           mse(y[!train])) %>% 
unlist 
plot(spans, loss, type = "l", # 
Plot validation loss by span 
     xlab = "span", ylab = 
"MSE") 
abline(v=spans[which.min(loss)]
, col = 2, lty = 2) 
abline(h=min(loss), col = 2, 
lty = 2) 
opt <- spans[which.min(loss)] # 
Select optimum span



png("nonparametric_fit.png", 
width = w, height = h) 
plot(x, y, pch = 19, asp = 1, 
     xlab = 
expression(italic(x)),  
     ylab = 
expression(italic(y))) 
loess(y ~ x, span = opt) %>%  
  predict %>%  
  lines(x, ., col = 2, lwd = 2) 
dev.off()


